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In order to increase the corrected field of view of an adaptive optics (AO) system, Beckers proposed
to place several deformable mirrors (DMs) in the conjugate planes of the dominant turbulent layers
(multi-conjugate adaptive optics, MCAO). The wavefront error caused by angular anisoplanatism in an
MCAO system depends on the number of corrected modes, theC2

n-profile and the geometry of the system.
We present a new approach of calculating the anisoplanatism by using spatial correlation functions of
(Zernike) modes. We also present a new scheme of measuring the individual wavefront distortion of each
of the dominant two layers with one Shack-Hartmann or a Shack-Hartmann-Curvature sensor per guide
star using the intensity fluctuations (scintillation) caused by the turbulence. The number and projection
geometry of the guide stars are discussed and the corresponding Strehl-numbers are calculated for the
measuredC2

n-profile at the Calar Alto Observatory, Spain, and its 3.5 m telescope. We show that for the
Calar Alto 3.5 m telescope, a setup consisting of two deformable mirrors would result in a corrected field
of view of three arcminutes.

1 Introduction

While AO systems increase the angular resolution of ground based telescopes by a factor of 5-20, their
most severe disadvantage is the very small corrected field of view which is typically of the order of 40
arcseconds in the K-Band (2:2µm) and only a few arcseconds in the visible. Placing several DMs in
the conjugate planes of the dominant turbulent layers as proposed by Beckers[1] (see fig. 1) has two
important advantages over a conventional AO system:

� Correcting the dominant turbulent layers instead of correcting the integrated wavefront aberrations
reduces the angular anisoplanatism considerably, even if the turbulence is not located in distinct
layers.

� For laser guide star (LGS) systems, focal anisoplanatism can be almost completely eliminated.

Therefore, in order to find the optimal position for the DMs (and for reconstructing the wavefront cor-
rectly), theC2

n-profile has to be measured simultaneously. The reason for the large isoplanatic patch of
an MCAO system compared to that of an AO system can be seen in fig. 2: In an AO system, the DM is
placed at the conjugate plane of the entrance pupil, resulting in large light path offsetsd = θz at high alti-
tudesz. In contrast, MCAO systems minimize the angular anisoplanatism for a given number of DMs by
placing them at the conjugate center of height intervalls (weighted by the intervall’s turbulence profile),
resulting in less overall angular anisoplanatism (compare the size of the shaded areas for both cases). In
the case of the Calar AltoC2

n-profile, as measured by Kl¨uckers et al. (see A.2), the optimal DM conjugate
heights are 400 m and 6900 m, which results in a corrected FOV of about 74” radius when five LGSs are
used for wavefront sensing, and about 90” for 7 LGSs (see fig. 3).

In section 2, the effects of different geometries of MCAO systems and their laser guide stars on angular
anisoplanatism are discussed. The corresponding Strehl-ratios are shown for a 3.5 m telescope and the
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Figure 1: Principle of a 2-DM-MCAO. DM 1 and DM 2 correct the height intervalls z 1 and z2,
respectively.
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Figure 2: Comparison of an AO and an MCAO system The shaded areas denote the amount of
angular anisoplanatism for a constant (=worst case) C 2

n-profile. The light path offset d(z) =
θjz� zDMj causes the angular anisoplanatism and is a function of angle θ between guide
star and object and the height difference jz�zDMj to the next DM. The small circles denote
the actuators of the DMs placed at the conjugate center of the height intervalls.

turbulence profile of the Calar Alto Observatory. Calculating the Strehl-degradation of angular aniso-
planatism requires an equation for the wavefront error as a function of the C2

n-profile, the number and
position of the DMs and the angle between science object and central guide star. This equation, derived
in section 3, also allows to optimize the position of each DM (that is to minimize the amount of angular
anisoplanatism for a given turbulence profile and number of DMs). The Strehl-ratio as a function of the
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angle between object and optical axis for different r0 and number of corrected modes is shown. The
involved (Zernike) correlation functions are listed in A.1. Section 4 gives a short introduction to scin-
tillation and describes the principle of separating the wavefront distortions with a Shack-Hartmann or a
Shack-Hartmann-Curvature sensor using intensity fluctuations.

A good introduction of MCAO can be found in [1], more recent estimations of the performance of MCAO
systems have been done by Johnston and Welsh [13].

2 Geometrical considerations of MCAO systems

As mentioned before, MCAO systems allow the wavefront correction over a field of view instead of only
a single direction. For measuring the wavefront distortion, several guide stars are necessary to cover the
field. Since it is unlikely to find natural guide stars at the desired positions, laser guide stars (LGS) will
be necessary in most cases. For mapping the wavefront distortion over the desired field, the LGSs have
to be pointed such that their light cones still overlap at the height of the highest turbulent layer. (see fig.
3 and fig. 4). The field of view of each Shack-Hartmann subaperture must be large enough to cover

LGS 1

LGS 2

LGS 3

α = 0° α = 0°

α = 45° α = 30°

74
’’

90’’

Figure 3: Top view at the highest turbulent layer. Each circle denotes one light cone from an LGS
to the telescope. For measuring the wavefront distortion over the desired field of view, the
light cones, i.e. the corresponding subapertures of the wavefront sensors have to cover the
field of view completely. Five (left) and seven (right) LGSs have been used for the follow-
ing calculations, respectively. The LGS-numbers are the same as in fig. 4. The viewing
angles of fig. 5 and the angular distances between the outer LGSs and the central LGS are
also shown.

the images of all LGSs. For NIR observations however the size of the corrected field can reach several
arcminutes, requiring a wavefront sensor camera of more than 1k x 1k pixels. In those cases it is more
feasable to assign one Shack-Hartmann-array to each LGS.

The amount of overlap (and therefore the corrected field of view) for a given telescope aperture and
number of LGSs depends on the C2

n-profile and the tolerable remaining anisoplanaticity error. For the
Calar Alto C2

n-profile, a 3.5 m-class telescope and Near Infrared (NIR) wavelengths lead to a rather small
anisoplanatism, so that two DMs would provide good correction over the entire corrected field, whose
size should be maximized by a small overlap of neighbouring LGS light cones. For 8 m-class telescopes
(seven arcminutes field possible with seven LGSs) or visible wavelengths however, the loss of image
quality due to the (D=r0)

5=3-law at the edge of the field becomes severe. Instead of using the full field,
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Figure 4: Side view of an MCAO geometry. Each circle in the turbulent layers resembles one Shack-
Hartmann-subaperture i.e. one actuator of the DM that is situated in the conjugate plane.
Solid and dashed circles denote the correction for the central LGS and the other LGSs,
respectively. At low altitudes, off-axis light cones mostly coincide with that of the (optimal
corrected) central LGS, whereas at high altitudes, an independent correction of off-axis
wavefronts is possible.

the LGSs should be pointed closer together. This results in a higher Strehl number for any direction
within the new (smaller) field due to less anisoplanatism of the high altitude correction.

The directions of the LGSs correspond to the highest accuracy for wavefront sensing (as in AO-systems,
no angular anisoplanatism). At low altitudes however, the light cones of the LGSs overlap almost com-
pletely. Since the corresponding DM can not have more than one shape at the same time, only one
direction (usually the central LGS, which signifies the center of the corrected FOV) can be corrected in
the optimal way. The angular anisoplanatism of the other LGS directions is mainly due to this low alti-
tude correction, where the light cones mostly overlap with that of the (optimal corrected) central LGS.
For high altitudes and little overlap between neighbouring light cones, more degrees of freedom allow
a correction close to the optimum, as can be seen in fig. 4. A more evenly correction can be achieved
when the low altitude DM corrects the low altitude average wavefront error of all LGS directions. This
however results in a slight loss of Strehl in the on-axis case. Therefore, in this paper we assume an op-
timal correction of the field center. Fig. 5 shows the Strehl-ratio as a function of the azimuth angle α
and the angular distance between object and central LGS. It is obvious that seven LGSs lead to a larger
and more evenly covered field of view than five LGS, although the Strehl dropoff due to residual angular
anisoplanatism is slightly higher.
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Figure 5: Strehl (σ2
fit+σ2

θ+σ2
cone, see section 3) as a function of the angle between object and central

LGS for the MCAO geometries shown in fig. 3 and a conventional AO system (D= 3:5 m,
Calar Alto C2

n-profile, K-Band, 37 corrected modes). The Strehl-ratio depends both on the
azimuth angle α and the distance to the central LGS. The superiority of an MCAO system,
especially when seven or more LGSs are used, compared to the conventional AO system
is obvious. Due to the cone-effect, the MCAO system gives better performance even at the
field center.

Although it is possible to use only one natural guide star (NGS) for absolute tip/tilt determination over
the whole field of view, the wavefront reconstruction would not be as accurate as if the absolute tip/tilt
was determined for each LGS. Since it is unlikely to find one NGS close to each LGS, the absolute tip/tilt
of each LGS should be measured independently. Ragazzoni[20] proposed to position and point auxiliary
telescopes in such a way that one LGS and one NGS are in a line with an auxiliary telescope. Then the
tip/tilt of each LGS can be determined by subtraction1. Another possibility is the use of polychromatic
LGSs [9], which excite two wavelengths in the sodium layer. The wavelength difference of the two
colours leads to a differential tip/tilt caused by atmospheric dispersion, from which the absolute tip/tilt
can be calculated. Unfortunately, for a sufficient excitation of the second colour, the output laser power
has to be increased by about two orders of magnitude.

3 The error σ2
θ of angular anisoplanatism

σ2
θ denotes the wavefront error that is caused by the angle θ between central LGS and science object

(angular anisoplanatism). If σ2
θ < σ2

θ0
= 1, then the object lies inside the isoplanatic patch θ0 and is

regarded as corrected [29]. Usually σ2
θ is expressed as

σ2
θ =

�
θ
θ0

�5=3

(1)

1Since one auxiliary telescope can measure tip or tilt, two auxiliary telescopes per LGS are required for absolute tip/tilt-
determination.
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This equation however does not take the number of corrrected modes into account: A simple tip/tilt
system has a much larger isoplanatic angle than higher order AO-systems. For the special cases of a
tip/tilt system and certain higher order systems Sasiela [26] and Chassat [4] already derived expressions.

The following approach of calculating σ2
θ is based on the tip/tilt-correlation functions Cx;y of two tip/tilt

measurements b and b0 (see fig. 6) and includes the general dependance of the isplanatic patch on the
degree of correction.

z

θ

d = zθ

telescope

D

star b star b’

Figure 6: Geometry of the spatial correlation functions (d = light path offset)

Measurements of correlation functions yield important information about the parameters of AO systems:
The temporal autocorrelation of tilt measurements determines the necessary bandwidth of the control
loop and the correlation of tilt measurements of different stars (spatial correlation) allows the calculation
of the isoplanatic angle.

According to Valley [30], the differential jitter of two beams caused by anisoplanatism is

h(b�b0)2
ix = 2[1�Cx] � hb

2
i (2)

h(b�b0)2
iy = 2[1�Cy] � hb

2
i (3)

hb2
i represents the one dimensional variance of the tilt[17][14]

hb2
i= 0:18

�
λ
r0

�2�D
r0

��1=3

[arcsec2
]: (4)

The x- and y- directions correspond to the directions parallel and perpendicular to the line of sight
between the two stars. Regarding the two dimensional differential tip/tilt variance as the cause of the
wavefront error of the uncorrected wavefront

σ2
= 1:03(D=r0)

5=3
= h(b�b0)2

ix + h(b�b0)2
iy (5)

leads to an expression for the wavefront difference of the two directions b and b0

σ2
θ;uncor = 1:03

�
D
r0

�5=3

� (2�Cx;θ�Cy;θ) (6)
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This equation is valid for uncorrected measurements. If the first N modes are corrected by DMs and/or a
tip/tilt-mirror, the different correlation of the individual modes has to be taken into account:

σ2
θ = 2

�
D
r0

�5=3

�

N

∑
j=1

(σ2
fit; j�1 �σ2

fit; j)(1�Cj(θ)) (7)

The factor of two resembles the two statistical variables (object and guide star). The sum considers the
different correlation Cj of each mode j and its contribution σ2

fit; j�1�σ2
fit; j (see A.3) to the total wavefront

error σ2
θ. This equation is in good agreement with Chassat[4] for Zernike-polynomials, but can be used

with other sets of polynomials and any number of corrected modes as well.

For a simple tip/tilt-system one obtains

σ2
θ;tilt = 0:896

�
D
r0

�5=3

(2�Cx(θ)�Cy(θ)): (8)

As a consequence of the approximation of a simple control loop, an improvement of the image quality
can only be expected for correlations better than 0.5 (a bad correction is worse than no correction.).

For a system with laser guide stars the wavefront error σ2
θ becomes

σ2
θ;LGS =

�
D
r0

�5=3

[0:896 � (2�Cx(θNGS)�Cy(θNGS))+ (9)

2
N

∑
j=3

(σ2
fit; j�1 �σ2

fit; j)(1�Cj(θLGS))]: (10)

3.1 Angular Anisoplanatism of a conventional AO-system

Since the turbulence profile dependence of the above equations is hidden in the correlation functions Cj,
it is sufficient to measure the tip/tilt correlation functions for calculating σ2

θ. Higher order correlations
can be roughly derived from the tip/tilt correlations, as decribed in A.1. If the C2

n-profile is known, the
isoplanatic angle can be calculated using

Cj(θ) =
R

c j(zθ)C2
n(z)dzR

C2
n dz

; (11)

where cj(zθ) = c j(d) denotes the correlation caused by a single layer at height z. This equation is valid
for uncorrected imaging or an AO system with the DM situated in the conjugate plane of the aperture.
Fig. 7 shows the Strehl-number of σ2

fit+σ2
θ as a function of the number of corrected modes and the angle

between science object and guide star. Because of the fast decorrelation of the higher modes, a low order
correction can yield a higher Strehl at large distances between object and guide star. The isoplanatic
angle of typically about 20 arcseconds is in good agreement with measurements done at the Calar Alto
3.5 m-telescope using the AO-system ALFA [15].
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Figure 7: Strehl (σ2
fit+σ2

θ) of an AO system as a function of the number of corrected modes and the
angle between science object and guide star (D = 3:5 m, Calar Alto C 2

n-profile)

3.2 Angular Anisoplanatism of a 2-DM-MCAO-system

In the case of an AO or MCAO system with M DMs at conjugated heights zi, the correlation Cj becomes

Cj(θ) =

0
B@ M

∑
i=1

(zi+zi+1)=2Z

(zi�1+zi)=2

c j(jzi � zjθ)C2
n(z)dz

1
CA
, ∞Z

0

C2
n(z)dz ; (12)

where (z0 + z1)=2 = 0 (the integration ranges from the ground to the first mirror) and (zM + zM+1)=2 =

height of the highest turbulent layer. For simplification it has been assumed that the number of corrected
modes per aperture size is the same in all layers, i.e. DMs correcting the high altitude turbulence have to
correct more modes (because of the larger covered area) than the low altitude DMs. Due to the smaller
light path offset between object and guide star in an MCAO system, the correlation functions have higher
values than those of AO systems (see fig. 2). Inserting Cj in eq. 7 delivers the angular anisoplanatism σ2

θ
of an MCAO system2. Usually the science object does not coincide with an LGS, so different parts of
the wavefront intersect different LGS light cones and are corrected accordingly. In this paper, the con-
tribution of each intersection to angular anisoplanatism is weighted linearly by the intersection fraction
(normalized to the aperture). This approximation leads to a linear Strehl decrease close to the field center
(instead of the almost gaussian decrease for AO systems), see fig. 8 and fig. 9.

Because already a 2-DM-MCAO system provides a very wide and well corrected field of view in K-
band (see fig. 5) and it is the simplest and cheapest MCAO possible, the following calculations have
been performed for a 2-DM-MCAO system. Fig. 8 and 9 show the Strehl-ratio (σ2

fit +σ2
θ) of an MCAO

(2 DMs) as a function of the number of corrected modes and r0 and the angle between science object
and guide star. It is obvious that a high order correction at large angles θ results in more Strehl-gain in
MCAO than in AO systems. It has been assumed, that the absolute tip/tilt of the LGSs is known (see end

2If the tip/tilt is measured by an NGS, j runs from 3 to N. In this case, σ2
θ is determined by eq. 8.
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of section 2). Due to the (D=r0)
(5=3)-law (see eq. 7), both AO and MCAO systems heavily depend on

good seeing to reach a high image quality.
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Figure 8: Strehl (σ2
fit +σ2

θ) of an MCAO (2 DMs) as a function of the number of corrected modes
and the angle between science object and optical axis (D = 3:5 m, 37 corrected modes,
Calar Alto C2

n-profile, K-Band, α = 30� (see fig. 3)).
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Figure 9: Strehl (σ2
fit +σ2

θ) of an MCAO (2 DMs) as a function of r0 (scaled Calar Alto C2
n-profile)

and the angle between science object and optical axis (D = 3:5 m, 37 corrected modes,
α = 30� (see fig. 3)).

Another possibility of calculating the isoplanatic angle of MCAO systems can be found in [28] and [31].
Their solution however is independent of the aperture size and the number of corrected modes.
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4 Separating the wavefront distortion of high and low altitude turbulent
layers

As it has been shown in the previous section, a 2-DM-MCAO already produces a wide and relatively
even corrected field of view. It is therefore sufficient to distinguish the wavefront aberrations of the
corresponding two layers (usually a high and a low altitude layer) or height intervalls.

One possibility is the use of tomographic methods, as proposed by Beckers [1]. Since a large number of
LGSs is required, this method will be quite demanding at night telescopes, but can be very useful at solar
telescopes where no LGSs are needed. New aspects of zonal tomography can be found in a paper by
Tallon and Foy [27], the possibility of modal tomography has recently been shown by Ragazzoni [21].

In order to avoid additional LGSs for measuring the individual wavefront distortion of two turbulent
layers, the intensity information provided in each lenslet of a Shack-Hartmann sensor can be used.

Other aspects of wavefront separation and reconstruction can be found in [25, 12, 23, 11].

4.1 Introduction to scintillation

Intensity fluctuations of star images (scintillation) are caused by the curvature of turbulent layers (sec-
ond deviation of the phase, lensing effect, as shown in fig. 10). Usually astronomical observations are

plane wavefront

turbulent layer

distorted wavefront

aperture plane

focus

case 1 case 2

Figure 10: A turbulent layer focuses (case 1) or defocuses (case 2) the incoming light, resulting in
a larger or smaller effective aperture in the focal plane.

not affected by scintillation because of the long integration times. However, if intensity fluctuations of
highly time-resolved measurements are not treated as noise, their height dependance can be used to pro-
vide information about the height distribution of turbulent layers. Good Introductions to the theory of
scintillation can be found in[5][6][7][8][22].
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The variance of the measured intensity σ2
I consists of the variance of the scintillation σ2

S and the other
noise sources (detector noise σ2

D and photon noise σ2
P):

σ2
I = σ2

S +σ2
D+σ2

P (13)

For known detector noise and photon noise, the measurement determines the amount of scintillation.
According to Reiger [22], the theoretical value of σ2

S is given by

σ2
S ∝ D�7=3

(cos γ)�3
Z

z2C2
n(z)dz; (14)

D and γ denoting the telescope aperture and the zenith angle, respectively. Simulations with the program
Turbulence [2] have lead to the normalized variance of the intensity

σ2
S = D�7=3λ2z2r�5=3

0 (cosγ)�3 (15)

for a single layer at height z and Fried parameter r0. Because of r0 ∝ λ 6=5, the scintillation does not
depend on the wavelength. For a C2

n-profile one obtains

σ2
S = 16:7 �D�7=3

(cosγ)�3
Z

z2C2
n(z)dz: (16)

Due to the factor z2 the scintillation is mostly caused by high altitude turbulent layers. For σS > 10%, i.e.
high zenith angles or small telescope apertures, the scintillation begins to become nonlinear, approaching
a maximum value, and eq. 16 is no longer valid [5][19].

4.2 Optical setup for separating the contributions of high and low altitude turbulent
layers

Since the wavefront gradient in each Shack-Hartmann (SH) subaperture is the sum of the wavefront
distortions of turbulent layers, additional information is needed for distinguishing the influence of indi-
vidual layers. By using the intensity information provided by the SH sensor, the distortion of one of the
layers can be reconstructed. Together with the known sum of the aberrations, this defines the wavefront
distortion of the other layer (fig. 11):

As in a conventional AO-setup, the SH sensor measures the tip/tilt in each subaperture, thus delivering
the integrated wavefront error. Because the SH sensor is situated in the conjugate plane of one of the
turbulent layers (subsequently named first layer), this layer has no effect on the intensity of the SH
pattern. The - according to the SH sensor - defocused other (subsequently named second) layer leads to
intensity fluctuations I02(x

0
2) in the subapertures from which the wavefront distortion φof the second layer

can be reconstructed [24] [11]:

I02(x
0
2) = 1�

z02 � z01
2k

∂2φ1(x02)

∂x022
(17)

Again, numbers denote the layers. z resembles the height, k = 2π=λ, and dashed variables signify the con-
jugate planes. The radial wavefront tilt affects the intensity measurement at the edge of the aperture[25].
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in the conjugate plane of one
of the turbulent layers

collimator

Figure 11: Setup of a wavefront sensor separating the wavefront distortions of two turbulent layers.
For clarity, the light paths of only two guide stars have been plotted. One SH sensor per
LGS is required.

Although it can be extracted directly from the SH tilt measurement and thus its contribution can easily be
corrected, the edge radial tilts must be known for each layer. They can be estimated by first determining
the mean gradient mi (averaged over all LGSs j) of each edge subaperture i. The mi can be regarded as
the edge gradients of the low altitude turbulence (which are the same for all LGSs), whereas the deviation
ri j can be seen as the high altitude gradients

ri j = ti j �mi with mi =

n
∑
j=1

ti j

n
; (18)

with ti j beeing the measured gradients. It is obvious that this is only an approximation which will be
the more accurate the higher the number of LGS (and thus the corrrected field of view) is. Once the
wavefront distortion of one of the layers has been reconstructed, subtraction from the measured sum of
the wavefront errors delivers the wavefront distortion of the other layer. The error made be the estimation
of the radial gradients, as described above, is still unknown. This problem should therefore be adressed
more closely.
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The normalized mean square error (MSE) of the intensity measurement is proportional to the wavefront
error induced by the inaccurate intensity measurement and can be written as

MSE =

1
Nγ

+
n�R2

N2
γ
+16:7 �D�7=3

sub (cos γ)�3 R
l1

(z�h)2C2
n(z)dz

16:7 �D�7=3
sub (cos γ)�3

R
l2

(z�h)2C2
n(z)dz

(19)

The numerator and the denominator resemble the noise and the signal, respectively. The noise consists
of the photon noise N1=2 and the read noise R �n1=2 (n being the number of pixels used for the intensity
measurents, R denotes the readout noise per pixel). For the scintillation signal, h is the conjugate height
of the SH sensor and Dsub the subaperture size of the SH sensor. The scintillation error due to the non
discrete layering of the C2

n-profile is very small and need not be taken into account.

Typically the measured scintillation is of the order of a few percent. This poses problems at low light
levels where the scintillation competes with the shot noise. Although it is possible to measure the scintil-
lation of the more turbulent layer (usually the ground layer) and thus get a smaller relative error, this does
not lead to a better separation of the layers because the absolute error of the wavefront reconstruction is
also proportional to the turbulence strength. Therefore it does not matter whether the scintillation of the
strong or the weak turbulence is measured. Instead, the MSE can be reduced by moving the SH sensor
further away from the conjugate plane of the first turbulent layer, as shown in Fig. 12: Although this

-5 -4 -3 -2 -1 0 1
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0.4

0.6

0.8

1

conjugate height of Shack-Hartmann sensor  [km]

MSE

I = 10 mag

I = 7 mag

I = 9 mag

I = 8 mag

Figure 12: Normalized mean square error (MSE) of the intensity measurements as a function of the
conjugate height of the SH sensor for different LGS intensities. The subaperture size and
the read noise have been assumed as Dsub = 0:5 m (35-40 corrected modes) and R = 3e�,
which are typical values for ALFA. The integration time of the wavefront sensor was
chosen to be optimal for each LGS brightness. In this figure, the scintillation caused by
the high altitude turbulence is measured. Increasing LGS brightness leads to increasing
optimal height of the SH sensor.

leads to an unwanted contribution to scintillation from the now defocused first layer, the MSE decreases
within certain limits due to the much higher scintillation signal from the second layer. However, in the
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case of a 589 nm LGS with a 10 mag G-star brightness equivalent, the maximum accuracy is 0.75, which
is not sufficient for wavefront separation with one SH sensor.

For low light levels the amount of scintillation has to be increased by moving the SH sensor further away
from the conjugate planes of the turbulent layers. Since the scintillation effects of two layers cannot be
distinguished with one SH sensor, an additional SH sensor is necessary, leading to the Shack-Hartmann-
Curvature (SHC) sensor. In contrast to the SHC setup with two SH sensors placed in the conjugate planes
of the two turbulent layers (Glindemann and Berkefeld [10]), we propose to position the SH sensors to
deliver mean intensity fluctuations of 10% each (non-linearity limit of scintillation). This is the case at
the conjugate planes of a very large positive height and a large negative height, leading to an excess of
illumination in one plane and to a lack of illumination in the other, similar to the Curvature Sensor [25].
For the Calar Alto C2

n-profile this results in heights of approx. 16 km and -12 km. The mean square error
becomes

aperture plane

focus

LGS 1LGS 2

Shack-Hartmann sensors
in the conjugate plane of a
high negative altitude

collimator

Shack-Hartmann sensors in
the conjugate plane of a very
high altitude

conjugate plane of low
altitude turbulence

conjugate plane of very
high altitude turbulence

conjugate plane of high
negative altitude

conjugate plane of high
altitude turbulence

beamsplitter

Figure 13: Setup of a Shack-Hartmann-Curvature sensor separating the wavefront distortions of two
turbulent layers (low light level). For clarity, the light paths of only two guide stars have
been plotted. One SHC sensor per LGS is required.
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Figure 14: Normalized mean square error (MSE) of the intensity measurements performed by a
SHC-sensor as a function of the guide star brightness. The conjugate heights of the SH
sensors have been assumed as 16 km and -12 km, the other parameters are the same as in
fig 12.
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An LGS brightness of 10mag leads to an accuracy of 0.2 which should be sufficient for most applications.
Therefore observations in the NIR and a typical LGS brightness of 10 mag require one Shack-Hartmann-
Curvature sensor (consisting of two SH sensors) per LGS. Observations in the visible require much more
powerful LGSs in order to sense and correct a higher number of modes. Then a single SH per LGS can
be used. In any case, the C2

n-profile and the zenith angle should be monitored continously in order to
adjust the SH sensors and the DMs accordingly.

5 Conclusion

By using MCAO, it is possible to overcome the most severe disadvantage of AO, the very small corrected
FOV. We have shown how the geometry of MCAO systems affects the angular anisoplanatism and thus
the size of the corrected FOV. A setup with seven LGSs for wavefront sensing leads to a wide and rela-
tively evenly corrected field. In the case of the Calar Alto 3.5 m telescope, this setup would lead to a FOV
of three arcminutes. Eq. 7 plays an important role in calculating the wavefront error caused by angular
anisoplanatism. By its minimization one obtains the optimal position of the DMs (according to the C2

n-
profile). Since the remaining anisoplanatism inside the field is rather small, a wavefront correction with
two DMs seems to be a good compromise between the anisoplanatism and the costs and the complexity
of the system. The separation of the wavefront errors of the two layers can be accomplished in various
ways: For solar telescopes, tomographic methods, as proposed by Beckers, seem to be the most accurate
and easy to implement way. At night telescopes, the separation can be done by using the intensity infor-
mation provided by each lenslet of the SH sensor. In the case of low light levels (10 mag LGS, typical for
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NIR observations) one Shack-Hartmann-Curvature sensor per LGS must be used, whereas one SH sensor
per LGS is sufficient for the bright LGSs required by high order AO systems working in the visible.

The high costs for the LGS setup and the absolute tip/tilt determination will prevent MCAO systems be-
ing used at existing 3.5 m-class-telescopes, at least as long as other further improvements of conventional
AO systems are possible. At 8+ m-class-telescopes however, focal anisoplanatism will require the use of
multiple laser guide stars. Furthermore, the costs of MCAO systems compared to those of the telescope
will decrease, so that MCAO will become a common feature at large telescopes.

A Appendix

A.1 Spatial correlation of Zernike-modes

The definition of the normalized correlation c of two measurements b and b0 is [3], see fig. 6:

c =
hbb0i�hbihb0ip

(hbi2 �hb2i)(hb0i2 �hb02i)
(21)

In the case of tilt measurements, eq. 21 can be simplified: Since hbi= hb0i= 0 (the mean tilt is zero) and
hb2

i= hb02i, c can be written as

c =
hbb0i
hb2i

: (22)

For a single turbulent layer (fig. 6), Valley [30] derived an expression for the correlation of Zernike-
modes:

cnm
nm ∝

R
dzz�14=3

� J0(2zd=D) � J2
2n+jmj+1(z)

cnm
n�m ∝ (�1)m R

dzz�14=3
� Jj2mj(2zd=D) � J2

2n+jmj+1(z);
(23)

m and 2n+ jmj denote the azimuthal and radial order of the Zernike modes. The correlation depends on
the telescope aperture D and the ligth path offset d, but because of the normalization, it is independent
of the turbulence strength of the layer. With the mode ordering function j

j = (2n+1)n for m = 0
j = (2n+ jmj+1)(2n+ jmj)=2+m�1 for m > 0
j+1 = (2n+ jmj+1)(2n+ jmj)=2+m for m > 0

(24)

one obtains the correlation of the Zernike mode j

c j(d) = c(2n+1)(2n)=2(d) =
cnm

nm(d=D)
cnm

nm(0)
for m = 0

c j(d) = c(2n+jmj+1)(2n+jmj)=2+m�1(d) =
cnm

nm(d=D)+cnm
n�m(d=D)

cnm
nm(0)+cnm

n�m(0)
for m 6= 0

c j+1(d) = c(2n+jmj+1)(2n+jmj)=2+m(d) =
cnm

nm(d=D)�cnm
n�m(d=D)

cnm
nm(0)�cnm

n�m(0)
for m 6= 0

(25)

Figure 15 shows the correlation for different aberrations as a function of the parameter d=D. Higher
order aberrations generally decorrelate faster because they resemble smaller structures (and thus smaller
correlation lengths).

16



0.2 0.4 0.6 0.8 1 1.2 1.4

-0.5

-0.25

0.25

0.5

0.75

1

correlation

d/D

c1 (y-tilt)

c2 (x-tilt)

c3 (focus)

c4 (astigmatism)

c5 (astigmatism)

c8

c9

c6 (coma)

c7 (coma)

Figure 15: Correlation for the first Zernike-modes as a function of the light path offset d and the
aperture D

A.2 Calar Alto C2
n-profile

Fig. 16 shows a slightly simplified C2
n-profile measured by Klückers et al. [16] at the Calar Alto Ob-

servatory, Spain. The upper turbulent layer at 7 km height delivers the main contribution to the angular
anisoplanatism, the lower turbulent layer determines most of r0. For a 2-DM-MCAO, the optimal DM-
heights are 400 m and 6900 m. It should be noted, that the turbulence profile can change rather quickly.
Klückers reported a change of the upper turbulent layer strength by a factor of two in only a few minutes.
Therefore, frequent C2

n-measurements should be made to adjust the optimum height of the DMs.
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Figure 16: C2
n-profile at the Calar Alto Observatory (Klückers et al., r0 = 66 cm at K-Band)
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A.3 The fitting error σ2
fit

σ2
fit denotes the wavefront error made by using a finite number of polynomial modes for describing the

wavefront. Table 1 shows σ2
fit for Kolmogorov-turbulence described by Zernike-polynomials as a function

of the number j of corrected modes[18].

σ2
fit;0 = 1:0299(D=r0)

5=3 σ2
fit;7 = 0:0525(D=r0)

5=3 σ2
fit;14 = 0:0279(D=r0)

5=3

σ2
fit;1 = 0:5820(D=r0)

5=3 σ2
fit;8 = 0:0463(D=r0)

5=3 σ2
fit;15 = 0:0267(D=r0)

5=3

σ2
fit;2 = 0:1340(D=r0)

5=3 σ2
fit;9 = 0:0401(D=r0)

5=3 σ2
fit;16 = 0:0255(D=r0)

5=3

σ2
fit;3 = 0:1110(D=r0)

5=3 σ2
fit;10 = 0:0377(D=r0)

5=3 σ2
fit;17 = 0:0243(D=r0)

5=3

σ2
fit;4 = 0:0880(D=r0)

5=3 σ2
fit;11 = 0:0352(D=r0)

5=3 σ2
fit;18 = 0:0232(D=r0)

5=3

σ2
fit;5 = 0:0648(D=r0)

5=3 σ2
fit;12 = 0:0328(D=r0)

5=3 σ2
fit;19 = 0:0220(D=r0)

5=3

σ2
fit;6 = 0:0587(D=r0)

5=3 σ2
fit;13 = 0:0304(D=r0)

5=3

Table 1: Wavefront error for Kolmogorov-turbulence described by Zernike-polynomials as a func-
tion of the number j of corrected modes

For j > 20, σ2
fit can be approximated by

σ2
fit; j � 0;2944( j+1)�

p
3=2

(D=r0)
5=3

: (26)
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