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Abstract. The Max-Planck institutes for astronomy (MPIA) and for extraterrestrial physics
(MPE) run an adaptive optics (AO) system with a laser guide star at the 3.5 m telescope on
Calar Alto, Spain. This system, called ALFA, produces now scientific results and works ex-
cellent with natural guide stars (NGS) as faint as 13th magnitude in R-band. The ultimate
goal however is to achieve similar performances with the laser guide star (LGS) which is faint
and extended. We introduce the Shack-Hartmann wavefront sensor implemented in ALFA
and present our efforts in increasing its sensitivity by using advanced centroiding and wave-
front reconstruction algorithms.

1. Introduction
The correction of wavefront distortions caused by
atmospheric turbulence require fast wavefront
measurements of some spatial resolution. Both,
the demands on speed and resolution, are set by
the atmospheric conditions and require a certain
guide star brightness in order to achieve an accu-
rate estimate of the wavefront. For faint guide
stars, this estimate will be based on noisy meas-
urements.

The Shack-Hartmann sensor (SHS) is the com-
monly used device to measure wavefronts in
adaptive optics. Its noise characteristics have been
developed analytically for the use of the weighted
pixel average algorithm to determine the spot
centroids (Rousset, 1994). We simulated the accu-
racy of various centroiding algorithms under
changing environmental parameters like detector
read-noise and pixel-scale.

After having obtained the spot locations
(wavefront slopes) various estimators can be used
to reconstruct the incident wavefront. We com-
pared the least squares and the weighted least
squares estimators. The latter uses the knowledge
of the noise covariance to provide a better estima-
tion in the low signal case.

2. The ALFA Shack-Hartmann sensor

A Shack-Hartmann sensor subdivides the pupil
into subapertures, and images each one sepa-
rately. The differences between the locations of
these subimages and the reference positions (ob-
tained during calibration) represent local wave-
front slopes of which the wavefront has to be re-
constructed.

The ALFA-SHS was provided by Adaptive Op-
tics Associates Inc., Cambridge, USA. The close-up
view in Figure 1 displays the individual compo-
nents (for a description of the whole system, see e.g.
Hippler et al., Glindemann et al., or Kasper et al.).

The field select mirror is in a re-imaged telescope
pupil plane, so that tilting this mirror results in a
movement of the image on the SHS-detector. This
mirror allows us to place a star within 30″ radius of
the optical axis onto the SHS.

Two field stops and a reference fiber source can
be inserted into the re-imaged focus. The field stops
are required if the guide star is in a dense star clus-
ter leading to cross talk between subimages, or if
the laser guide star is used and the Rayleigh-
scattered light has to be blocked.

Eventually, the telescope pupil is imaged onto a
microlens array that produces the spot pattern. The
lenslets can be changed remotely from a single lens
to an array covering the pupil with 30 subapertures.

Figure 1: The ALFA Shack-Hartmann sensor

The spot pattern can be focused on the CCD
camera via a relay lens. Since this camera is moun-
ted on a motorised stage, we are able to adjust the
pixel-scale (usually 0.5″ per pixel) and to accom-
modate the difference in focus between a natural
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guide star (NGS) at infinity and the laser guide
star (LGS) at around 90 km.

2.1. The microlens arrays
There are 4 different microlens arrays mounted on
a motorised stage, in order to react to various
seeing conditions and guide star magnitudes. The
arrays are coated on both sides to achieve maxi-
mum transmission.

Figure 2 shows the available arrays and their
orientation to the telescope pupil.

The D3 array (D3 stands for 3 subapertures per
pupil diameter) provides 6 subapertures over the
telescope pupil, since the central lens is obscured
by the secondary telescope mirror. This array is
used for very faint guide stars.

There are two D5 arrays with different focal
lengths providing 18 subapertures each. These ar-
rays are used for faint guide stars and the LGS.

The D7 array provides 30 subapertures and is
used for bright NGS.

Additionally, it is possible to use a single lens
for LGS diagnostics like brightness, spot size etc.

Figure 2. The ALFA microlens arays. Left: D7 array
with 30 subapertures. Middle: D5 array with 18 su-
bapertures. Right: D3 array with 6 subapertures.

2.2. The detector
The SHS detector is a thinned 64 x 64 pixel CCD
that is used in frame transfer mode. The maxi-
mum frame rate is 1206 Hz with a pixel clock of
1.8 MHz and a read-noise of about 4 electrons. In
figure 3, the quantum efficiency is shown to be
around 80% between 600 nm and 750 nm. The
underlying grey curve shows the quantum effi-
ciency of the tip-tilt-tracker CCD (EEV39).

The camera has a two stage thermo-electric
cooler providing an operating temperature of
–35˚C which reduces the dark currents of the
CCD. Thermal energy is transported outside the
camera via a heat-pipe.

Figure 3. Quantum efficiency of the SH-CCD (LLCCD).

3. GS brightness and AO performance

Figure 4 was taken from Louarn et al. (1998) and
shows the simulated dependence of the  perform-
ance of an AO system (the Strehl-ratio is used as an
indicator for image quality) from the guide star
magnitude. Two main regimes are prominent:

!  A fairly constant region for brighter guide stars.
The performance is limited by fitting and alias-
ing errors which can’t be avoided since they are
inherent in the wavefront sensor and the chosen
control modes.

!  A quick drop in performance going to fainter
guide stars. Inaccurate wavefront reconstruction
because of measurement noise starts to domi-
nate.

In principle, two possibilities exist to increase the
flux in the subapertures:

!  Bigger (but fewer) subapertures. This would re-
sult in a coarser sampling of the wavefront and
larger fitting error because of less and erroneous
reconstructed modes.

!  Longer integration (lower framerate). This
would produce a larger error because of tempo-
ral anisoplanatism.

The three X’s in Figure 4 show the results obtained
with ALFA in K-band and confirm the general be-
haviour.
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Figure 4. Simulated Strehl-ratio as a function of guide
star magnitude (taken from Le Louarn et al. (1998)).
Lines: Good seeing model. +: Median seeing model. Up-
Down: K-, H-, and J-band. X’s: ALFA results.

PSF examples
The left image in Figure 5 shows a 10s K-band ex-
posure of an mV = 8.1 star. The PSF has a Strehl-
ratio of 72% and a FWHM of ≤ 0.14’’.

The image to the right is a 20s K-band expo-
sure of an mR  = 12.7 star. The Strehl-ratio is
around 20% and the FWHM is 0.16’’. Some of the
2s exposures which have been added to obtain the
long exposure have Strehl-ratios of more than
30%.

Figure 5: K-band long exposures corrected with ALFA.
Left: NGS mV = 8.1. Right: NGS mR = 12.7

4. Centroiding algorithms

In order to improve the low signal performance
we investigated different centroiding algorithms
which have to work fast enough to be used in
closed loop. Four algorithms have been studied:
!  WPA. The weighted pixel average is calculated

by x x I Iwpa i ii ii
= ⋅∑ ∑ .

!  CWPA. The constrained WPA uses only 5x5
pixels around the brightest one.

!  THRESH. The threshold WPA masks out all pix-
els with intensities below a certain value.

!  WWPA. The weighted WPA raises all pixel val-
ues to the 1.5th power before doing the WPA.
The motivation for this was to weight each pixel
with its photon noise. ( I I I Ii wwpa i i i,

.= ⋅ = 1 5 )

4.1. Simulations
We used the following Monte Carlo simulation
process:
! Create arrays with read-noise (e.g. 10x10 pixels).
!  Choose a large number of centroid-positions by

random (e.g. 500 centroids for the upcoming
simulations).

!  Create spots by projecting gaussian functions
onto the pixel grid.

! Add photon-noise to the pixel intensities.
! Convert electrons into counts.
! Apply algorithms to calculate centroids.
! Compare them with the random original posi-

tions.

Centroiding vs. flux
Figure 6 plots the simulated rms centroiding error
in pixels against the flux level. Effects like saturat-
ing the camera are not taken into account in this
case. The simulation parameters for these curves
match the ALFA case (4 electrons read-noise, pixel-
scale: 2 pixels/FWHM, array-size: 10x10 pixels)

The WPA is the least accurate algorithm, while
the others deliver comparable performances. The
WWPA has a slight advantage over the other algo-
rithms around a signal of 1000 e-, which resembles
the faint guide star case.

Figure 6. Comparison of the different centroiding algo-
rithms.
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The error variance is approximately propor-
tional inversely proportional to the signal which
is the analytical result.

Centroiding vs. pixel-scale
Figure 7 plots the simulated rms error for the spot
centroids against the signal level for different
pixel-scales. Other simulation parameters have
been: 4 e- read-noise, WWPA algorithm, 10x10
pixel array-size. Note that the y-axis is given in
some arbitrary length units because the pixel-size
is variable.

A very coarse pixel-scale of 1 pixel / FWHM is
only favourable for very low signals but saturates
quickly for higher fluxes. Using a fine sampling of
3 pixels / FWHM has no advantage compared to
2 pixels / FWHM in the interesting region below
a total signal of 10000 e- (it is in fact disadvanta-
geous, i.e. oversampling should be avoided).

Figure 7. Impact of the CCD pixel-scale on the cen-
troiding error.

Centroiding vs. read-noise
Figure 8 plots the simulated rms error for the spot
centroids against the signal level for different
read-noise values. Other simulation parameters
have been: 2 pixels / FWHM pixel-scale, WWPA
algorithm, 10 x 10 pixels array-size.

As expected, less read-noise provides quite an
improvement for very low signals below a few
thousand e-. Note that an almost 4 times brighter
star is required to achieve an accuracy of 0.1 pix-
els with a 4e- read-noise detector compared to a
zero read-noise detector.

Figure 8. Impact of CCD read-noise on the centroiding
error.

4.2. Measurements
We used a method described by Gendron (1995) to
calculate the gradient’s measurement noise. The
autocorrelation function of the measured gradients
shows two features: A smoothly varying compo-
nent due to the atmospheric turbulence and a spike
at the origin due to the uncorrelated measurement
noise. The initial value theorem can be used to
show that the derivative of the image motion auto-
correlation function is zero at the origin. Therefore,
a parabola fit can be used to extrapolate to the ori-
gin. In practise, taking the difference between the
first two values turned out to be a reasonable esti-
mate for the noise variance, see Figure 9.

Figure 9. Autocorrelation function of measured gradi-
ents near the origin.
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We implemented the algorithms mentioned in
section 4 in the ALFA software, and tested their
performance on a star. Sets of 4000 gradients
taken with 300 Hz framerate were used through-
out the experiment. Besides the different algo-
rithms, 3 different light levels were investigated
using neutral density filters. ND0.04 is almost like
no filter, ND1.0 has an attenuation factor of 10,
ND1.5 has an attenuation factor of 10^1.5 ≈ 31.

The results are shown in Figure 10. The statisti-
cal analysis (t-test) indicates that the WWPA algo-
rithm is almost certainly superior to the other al-
gorithms at all light levels. The CWPA and the
WPA performances are most sensitive to the sig-
nal level, with the WPA performing better at high
levels and the CWPA performing better at low
levels.

Figure 10. Experimental comparison of centroiding al-
gorithms.

5. Modal coefficient noise
Knowing the noise covariance of the measured
centroids, the noise covariance of the modal coef-
ficients can easily be calculated.

Let the modal coefficients be estimated by a
matrix multiplication. So the gradient noise vector
eg  propagates accordingly onto the modal coeffi-
cients: e R em g= ⋅ . R is usually called the Recon-
struction matrix. The covariance matrix of the
modal coefficient noise is then:

e e R e e Rm m
t

g g
t t=

Wavefront estimators
Assume the following model for the measured
gradients:

g Da e E e eg g g
t= + ≡,

D  is the interaction matrix which describes the in-
teraction of modes applied with coefficients a  with
the sensor measurements.

We investigated two reconstuctors which give
an estimate for the modal coefficients based on the
noisy measured gradients. These are the commonly
used least squares reconstructor: R D D DLS

t t= −( ) 1 ,
and the weighted least squares reconstructor:
R D E D D EWLS

t t= − − −( )1 1 1  (for additional information
see Melsa & Cohn, 1978). RWLS  reduces to RLS  in
case of uniform noise and should perform better, if
the noise level varies with the gradients.

Figure 11 shows a measurement for the ALFA
D5 array which rules out the assumption of uni-
form noise. Possible reasons for the observation are
unequally illuminated subapertures (see Figure 2)
and static aberrations of the microlenses.

Figure 11. Measured noise for the 36 gradients for the D5
array. (18 subapertures can measure 36 x and y
gradients).

An experimental comparison of the two recon-
structors was made, but under unfavourable seeing
conditions (1.3” in K and quite variable). The noise
covariance was measured on the star and the recon-
struction matrices as introduced above have been
used during closed loop operation. The Strehl-ratio
was used as a performance indicator because it is a
function of the residual wavefront error.

Figure 12 shows that the WLS reconstructor per-
formed better than the LS reconstructor, but the
significance level (74%) is not high enough to con-
clude this with certainty. This experiment will be
repeated with more replications.
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Figure 12. Comparison of the Least Squares and the
Weighted Least Squares (Gauss-Markov) reconstruc-
tors.
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