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Abstract

Observations with ground based tel escopes suffer from atmospheric turbulence. Indepen-
dent of the telescope size the angular resolution in the visibleis equivalent to that of atelescope
with adiameter of 1020 cm. This effect is caused by the turbulent mixing of air with different
temperaturein the atmosphere. Thus, the perfectly planewave from astar at infinity is aberrated
before it enters the tel escope.

In the following, we will discuss the physical background of imaging through turbulence,
using Kolmogorov statistics, and the different techniques to sense and to correct the wave-front
aberrations with adaptive optics. We will also present a smulation method for time-evolving
turbulence. The requirements for the control loop of an adaptive optics system are discussed
including formulas for the limiting magnitude of the guide star as a function of the wave-front
sensing method, of the quality of the wave-front sensor camera, and of the degree of correction.

In the discussion of tip-tilt correction by tracking the intensity peak rather than the inten-
sty centroid some new aspects will be presented of the relationship between the properties of
the wave-front, and the image intensity distribution. Also, a new method will be discussed to
measure and distinguish individual turbulent layersin order to increase the isoplanatic angle.

A short introduction to deformable mirror technology and the principles of adaptive optics
with laser guide stars will be followed by examples of adaptive optics systems. Here, we will
demonstrate how theimageimprovementisdonein practice. Twotip-tilt sysstemsand ALFA, the
adaptive opticssystem with alaser guide star of the Calar Alto 3.5-m telescope will be presented
in detail.
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Chapter 1

| ntroduction

The image quality of ground based telescopes suffers from atmospheric turbulence. 1ndepen-
dent of the telescope size the angular resolution in the visibleis equivalent to that of atelescope
with adiameter of 1020 cm. This effect is caused by the turbulent mixing of air with different
temperaturein the atmosphere. Thus, the perfectly plane wavefromastar at infinity is aberrated
before it enters the tel escope.

It was theidea of H. Babcock in 1953 to correct these aberrations with a deformable mirror
to obtain diffraction limited images [3]. The principle of an adaptive optics system is displayed
inFig. 1.1. Thedeformablemirror, awave-front sensor and acamerain the corrected focusform
the main elements. The wave-front sensor measures the aberrations with a high frame rate and
sends the control signals to the deformable mirror in order to correct the aberrations. Then, the
corrected focus can be recorded by a camerawith an exposure time independent of atmospheric
turbulence.

Although this sounds smple, some demanding technical requirements for the wave-front
sensor and for the deformable mirror delayed the realisation of adaptive optics systems by sev-
eral decades. Inthe US Air Force, adaptive optics systems were devel oped since 1970 in classi-
fied research [35] both for improved imaging of satellites and for the projection of high energy
laser beams onto missiles. In the civilian sector, it took until the late 1980’ s before the COME-
ON system of the European Southern Observatories was installed on the 3.6-m telescope in

1IN | E

Wavefront-
sensor

Deformable
Mirror
i i Corrected
Focus

Figure 1.1: The main elements of an adaptive optics system. The wave-front sensor measures
the aberrations and sends the information to the deformable mirror to flatten the wave-front. A
camera in the corrected focus takes the corrected image.
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2 CHAPTER 1. INTRODUCTION

Chile[60Q]. Inthe northern hemisphere, the PUEO adaptive optics system of the Canada-France-
Hawaii Telescope was the first to become available to the astronomical community for regular
science observationsin 1996 [71].

The technical requirementsfor adaptive optics systems concern the framerate and the sensi-
tivity of the wave-front sensor camera, and the frequency that can be applied to the deformable
mirror. The required frame rate is determined by the rate of changes of the atmospheric turbu-
lences. Therefore, the statistical parameters of the turbulenceplay avital rolefor adaptive optics
systems. Kolmogorov statistics provide asuitabl e theoretical model for atmospheric turbulence.
Measurements of the statistical propertieshave mostly confirmed the assumptions of thistheory.

Figure 1.2: Speckle images of asingle star in the visibleat 0.5 m (on the left) and at 10 um
(on theright) under identical atmospheric conditionson a 3.5-m telescope. Inthe 10 pm image,
parts of thefirst diffraction ring can be seen. A simulation for atmospheric turbulence was used
to produce the images.

The most important question for the applicability of adaptive optics systems to astronomical re-
search isthe question about the sky coverage: how much of the sky can be observed given that
a star of suitable brightness, the guide star in the wave-front sensor, has to be close to the ob-
ject star? The required brightness of the guide star follows from the required frame rate of the
wave-front sensor camera determined by the rate of changes in the atmosphere, and from the
desired degree of correction. In Fig. 1.2, instanteneous images of asingle star on a 3.5-m tele-
scope under identical atmospheric conditions are displayed at different wavelengths. At 10 um,
asinglediffraction limited speckleismoving around sowly, and image stabilisation is sufficient
to create adiffraction limited image. Inthevisible at 0.5.m, a speckle cloud of afew hundred
speckles displays a dynamic behaviour like in Brownian motion. Creating a single diffraction
limited point spread function requiresadeformablemirror with approximately asmany actuators
as there are speckles. This example illustrates the very different requirements for the adaptive
optics system at different wavelengths. Thus, the answer to the question about the sky cover-
age depends on the desired degree of correction and the subsequent parameters for wave-front
sensor framerate, and on atmospheric conditions.
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In the following, we will discuss the physical background of imaging through turbulence,
and the different techniques to sense and to correct the aberrations caused by the turbulence.
Examples of adaptive optics systems will demonstrate how the image improvement is donein
practice.

The chaptersare organised asfollows. In Chapter 2, after a short introduction to the notation
used in Fourier optics, the Kolomogorov statistics and the impact on theimaging processaredis-
cussed, and a smulation method is presented. The emphasis in Chapter 3 is put on wave-front
sensing and reconstruction, and on closed loop operation. The limiting magnitude of the guide
star is expressed quantitatively as afunction of the wave-front sensing method, of the quality of
the wave-front sensor camera, and of the degree of correction. The discussion of tip-tilt correc-
tion by tracking the intensity peak rather than the intensity centroid contains some new aspects
of the relationship between the properties of the wave-front and theimage intensity distribution.

Also in Chapter 3, the deformable mirror technology and the principles of adaptive optics
with laser guide stars areintroduced. The chapter closes with the presentation of a new method
to measure and distinguish individual turbulent layersin order to increase the isoplanatic angle.

In Chapter 4, examples of adaptive optics systems are given, incorporating the discussion of
Chapter 3. Two tip-tilt systems and ALFA, the adaptive optics system with alaser guide star of
the Calar Alto 3.5-m telescope will be presented in detail.

For further reading on this subject, the book by R. K. Tyson [89] covers the field in great
detail, and M. C. Roggemann and B. M. Welsh devote several chaptersin their book on imag-
ing through turbulence to adaptive optics[79]. The conference proceedingsof aNATO summer
school on adaptive optics, edited by D. Alloin and J.-M. Mariotti [2], contains interesting con-
tributionsfor the expert reader.
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Chapter 2

| maging through Atmospheric Turbulence

In the following, the relevant theoretical framework for understanding imaging through atmo-
spheric turbulence will be discussed. For amoredetailed description thereader isreferred to the
review by Roddier [ 73] which ismainly based on the analysis of wave propagationin aturbulent
medium by Tatarski [85].

In the first section of this chapter, the quantities and the underlying theory of the imaging
process are briefly stated. In the following sections, first Kolmogorov's mathematical model to
describe atmospheric turbulence is introduced [46]. Then, the statistical properties of the elec-
tromagnetic wave are discussed, and the impact on image motion and the appearance of the im-
age are investigated. Finally, a numerical method for simulation of Kolmogorov turbulence is
presented.

2.1 Preiminaries

The wave propagation through the atmosphere and the tel escope into thefocal planeisvery con-
veniently described by Fresnel diffraction. Incorporating optical elementslike lenses or mirrors
in aspherical approximation leads to the well known Fourier rel ationship between the amplitude
of the electromagnetic wave in the pupil of the telescope and the amplitude in its focal plane
[30, 5, 53].

We use the notation W (%) for the complex amplitude in the telescope pupil and A(w) for
the complex amplitude in the focal plane. The two quantities are connected through a Fourier
transform

A(@) = / U(7) exp(2miTid) d7,
wheretheintegrationisperformed over thetelescope pupil. The phase ¢(¥) of ¥(#) incorporates
the turbulent atmosphere as well as the telescope aberrations. In the telescope focus, we are
usualy interested in the intensity distribution /(@) = | A(«)|? that can be written as

1@ = [[ W@ @) exp2mi( - 7)) di'dz"
-/ ( [way i - :I;’)dj;”) exp(2miFi) d7,

5



6 CHAPTER 2. IMAGING THROUGH ATMOSPHERIC TURBULENCE

where [ U(2")U*(7' — ¥)dz’ isthe autocorrelation of the amplitudein the telescope pupil that is
called the optical transfer function (OTF). If aplanewave from a point source at infinity entersa
perfect, i.e. aberration free, telescope the OTF isa purely real function — approximately shaped
likeatriangle—and itsFourier transformisthe diffraction limited point spread function, the Airy
disk.

Inthe case of statistical fluctuations of the el ectromagnetic wave, dueto an incoherent source
or atmospheric turbulence, the autocorrel ation can be expressed as an ensemble average over al
possible realisations, called the coherence function:

[(Z) =< U(a") U™ (z' — F) > .

Itisone of the main tasksof turbulence theory to connect the atmospheric propertiesto the coher-
ence function in the telescope pupil and, thus, to its Fourier transform, the point spread function
(PSF) in the telescope focal plane. If atmospheric turbulence rather than the telescope diameter
limitsthe size of the PSF it is called the seeing disk and itsfull width at half maximum (FWHM)
is called the seeing.

2.2 Kolmogorov turbulence

The statistics of the spatial and temporal structure of atmospheric turbulenceis of great impor-
tance to describing the propagation of light through the atmosphere. Following from the theory
of fluid motion the flow of air becomesturbulent, i.e. unstable and random, if the Reynolds num-
ber Re = Lovo/k, exceeds acritical value, where L, isthe characteristic size of the flow, v, is
the characteristic velocity and &, isthe kinematic viscosity. With typical numbersfor these pa-
rameters, Lo ~ 15m, vo ~ 10m/sec and k, = 15 x 107% itis Re ~ 10° which corresponds to
fully developed turbulence.

Kolmogorov suggested that the kinetic energy in the largest structures of the turbulenceis
transferred successively to smaller and smaller structures[46]. He also assumed that the motion
of the turbulent structureis both homogeneous and i sotropicimplying that the second and higher
order statistical moments of the turbulence depend only on the distance between any two points
in the structure. If the product of the characteristic size L of the small structure and its velocity
v istoo small to keep the Reynolds number in the turbulent regime the break up process stops
and the kinetic energy is dissipated as heat by viscous friction. In a stationary state, the energy
flow from larger structures L to smaller structures/ must be constant, i.e. the amount of energy
that is being injected into the largest structure must be equal to the energy that is dissipated as
heat. If the typical transfer time of the kinetic energy F through a structure of size! is given by
[/v the energy flow rate, ¢, can be written as

E(L) _ EQ)

1
€ = = = 2 = const, (2.1

anditis
v X 6(1)/3l1/3. (2.2
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Thekineticenergy F(k) inthe spectral range k and & + dk isproportional to v?. With the spatial
frequency & o [~! one obtains

E(k)dk o k™3 or E(k) oc k™3, (2.3)

For isotropic turbulencethethree dimensional case can be calculated by integrating over the unit
sphere:
E(k) = Ark*E(k) = E(k) o< k12, (2.4)

This relationship expresses the Kolmogorov spectrum. It holdsin the inertial range of turbu-
lencefor Ly' < k < I3 where L, isthe outer scale of turbulence, generally the size of the
largest structure that moves with homogeneous speed, and [, isthe inner scale at which the vis-
cous dissipation starts. The outer scale of turbulence varies between a few meters close to the
ground where the largest structure is determined by the height over the ground, and afew hun-
dred metersin the free atmosphere which isthe thickness of the turbulent layer [ 10, 86, 33]. The
inner scale of turbulenceisin the range of afew millimetres near the ground to about 1 cm near
the tropopause [73].

2.3 Index-of-refraction fluctuations

Light traveling through the atmosphere is affected by fluctuations of the refraction index. The
physical source of these fluctuations are temperature inhomogeneities produced by turbulent
mixing of air. Theindex of refraction asafunction of wavelengthisgiven by the Cauchy formula
A
154 1.22 4
n(A) =14 (272.6 + 7)10 , (2.5)

with A ingm and the numerical parametersfor 15°C and 1000 mbar. »(A) for different temper-
aturesisdisplayed in Fig. 2.1. Both numerical parameters depend dightly on temperature and
pressure. However, this dependence can be neglected in the second parameter (that is 1.22 in
Eq. 2.5), and the index of refraction (i) can be modelled asthe sum of a purely wavelength de-
pendent part »(A), and arandomly fluctuating part » ¢ () depending on temperature and pressure.
This approximation has the consequence that the shape of the wave-front isindependent of the
wavelength. Effectsthat show awavelength dependence, likethe different number of specklesin
the optical and in theinfrared, are caused by the different relative impact of the same wave-front
distortion at different wavelengths.

Usingn(X) ~ 1, therefractionindex asafunction of temperature and pressure at optical and
near infrared wavelengths can be written as [43]

6P
n() 1= ny() = a0, (26)
where 7' is the temperature of the air in Kelvin and P the pressure in millibar. It can be shown
that therefractionindex asapassive, conservative additive, i.e. aquantity that does not affect at-
mospheric turbulences and that is not affected by the motion of theair, also followsKolmogorov
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Figure2.1: Therefractionindex of air at 0, 15 and 30°C and 1000 mbar as given by the Cauchy
formula. The dependence on temperature can be modeled by approximating the refraction as a
sum of temperature and wavelength dependent terms.

statistics [63]. Then, the power spectral density @, (%) of n() has the same spatial frequency
dependence as the kinetic energy and can be expressed as

®, (k) =0.033 C2 E~11/3, (2.7)

The quantity C'? iscalled the structure constant of the refraction index fluctuations and has units
of m~%/%. It characterisesthe strength of the refraction index fluctuations. Measurements of (2
have shown a good agreement with the Kolmogorov theory (seee.g. Hufnagel [41] and Clifford
[9]). Thelatest measurementsof C'? have been performed by Kliickerset a. [45] using amethod
suggested by Vernin [92].

Based on measurements Hufnagel, together with Valley [90] suggested a model for the at-
mospheric turbulence profile called the Hufnagel -Valley-Boundary model. Asthe profile varies
fromsiteto siteand fromtimeto timethismodel can only givearoughideaof thelayer structure.
The structure constant can be modelled using the formula

C2(h) = 2.2 x 1070 4 10710715 1 1.7 5 107 M /0L, (2.8)

Likethe statistical distribution of velocity discussed in Sect. 2.2 therefraction index distribution
isisotropic and homogeneousaslong asthe spatial frequenciesinvolved areintheinertial range,
with Ly' < k < I5". The Kolmogorov theory predicts a mathematical form for ®,, (%) only
inside theinertial range. The von Karman spectrum [43] models the power spectral density also
outside of this regime.

Sofar, only thepower spectral density of therefractionindex fluctuations has been discussed.
The power spectral density isrelated to the autocorrelation I, (7) =< n(r1)n(r; + ) > by the
Wiener-Khinchin theorem: )

I,.(F) = / ®,.(|F) e dF. (29)

Asalready noted, therandom process|eading to the fluctuation of therefractiveindex isisotropic
and homogeneous. Thus, second and higher moments of », like the autocorrel ation depend only
on the distance between two points. This allows us to express both the power spectral density
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Figure2.2: Average C? profile as afunction of atitudein km as given by the Hufnagel-Valley
model. Two distinct layers can be distinguished, near the ground (100 m) and at 10 km. For
better visualisationthe hC? vs. log h presentation was chosen.

and the autocorrel ation as functions of the three dimensional vectors & and ¥ where || and |7
are denoted by £ and r respectively.

To avoid the integration over the pole at & = 0 the structure function of the refraction index
isintroduced as

D.(r) = <|n(r1)—n(ri + 7“)|2 >
= 2(<n(r)* > —<n(r)n(ri +7r) >)
= 2(I'.(0) = I'a(r)) -

The result of this calculation was derived by Obukhov [63]:
D, (r) = C*¥/3, (2.10)

Thisform of the structure function of the refractiveindex is known as Obukhov’slaw. Together
with the Kolmogorov spectrum (Eqg. 2.7) it formsthe basis for the description of wave propaga-
tion through turbulence.

2.4 Statistical propertiesof the aberrated complex wave

For the sake of simplicity, only horizontal monochromatic plane waves are considered, propa-
gating downwards through atmospheric turbulence from a star at zenith. The fluctuations of the
complex amplitude are calculated by using the Kolmogorov spectrum and Obukhov’s law.

24.1 Thin layer turbulence model

Using the thin screen approximation [ 73], thelayer thicknessis assumed to be large compared to
the correlation scal e of the fluctuations but small enough to neglect diffraction effectswithin the
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layer. Also, the layer is non-absorbing and its statistical properties depend only on the altitude
h, i.e. the structure constant C'? does not vary in the horizontal direction.

After propagation through athin turbulent layer at altitude &, the phase isrelated to the dis-
tribution of the refractive index through

97 rhtdh
on(d) = — n(&,z)dz, (2.12)
A Jn
where ¢4 is the thickness of the layer and 7 = (x, y) denotes the horizontal coordinate vector.
The complex amplitude after propagation through alayer at altitude ~ can be written as

U, (7) = en(@), (2.12)

To describe the statistical properties of the complex wave we need the correlation function of
the complex amplitude, the coherence function, defined as

Lu(@) = < W(a) W5 + 7) >

= < @) (2.13)

Astheintensity distributioninthe telescopefocal planeisthe Fourier transform of the coherence
function in the telescope aperture, its description as afunction of the atmospheric properties de-
termines the telescope point spread function affected by atmospheric turbulence, i.e. the seeing
disk.

Since the phase ¢,,(%) isthe sum of alarge number of independent variables (the refraction
indicesn (7, z), EQ. 2.11) it isreasonable to apply the central-limit theorem implying that ¢, (%)
and also ¢, (') — ¢y (2 4 %) follow Gaussian statistics. Then, the expectation valuein Eq.(2.13)
is called the characteristic function of the Gaussian random process, and it is defined as

< >= /eimpv(x)dx = e_%<”2>22, (2.14)

where p, () denotes the Gaussian distribution of the random variable v. In Eq.(2.13) v isthe
Gaussian distributed phase difference ¢, (') — ¢, (2’ + &) and z equals unity. Using these prop-
erties, the coherence function can be written as

I,(7) = e—%<[¢h(5’)—¢h(5’+f)]2> (2.15)

Y

or, introducing the phase structure function D, ,(7) =< [¢n(2) — o (2’ 4 Z)]? >,
[)(Z) = e 2Pen®, (2.16)

The problem of determining the coherence function of the complex amplitudeis now shifted to
calculating the phase structure function D, ,(%). The relation between the three-dimensiona
distribution of the refraction index and the two-dimensiona distribution of the phase is given
by Eqg.(2.11). Thisleads from the three-dimensional structure function of the refraction index
(Eq. 2.10) to the one of the phase D, () that depends on the two-dimensional vector 7. As-
suming aso that 6/ is much larger than the correlation scale of the fluctuations, one can show
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that for ahorizontal wave-front entering the layer ; at altitude /., the phase structure function at
the exit of the layer is[17]

27

Dy (3) = 2915

)25h:C2 |75, (2.17)
In the following the scalar variable x = |Z| will be used.

Dy 5, isthe phase structure function of the phaseinrad. If the phase is given in the dimen-
sion of meter it describes the physical shape of the turbulent wave-front. It isinteresting to note
that the phase structure function of the phasein meter, and thus the shape of the phase, isinde-
pendent of wavelength. Thisfollowsfrom n(7) = n(X) + n (7). Itis D7, = Dy, x (55)* =
2.916h;C? | 7>/, Therefore awave-front sensor can be operated in the visible determining the
shape of the wave-front and steering the deformable mirror for observationsin the infrared.

2.4.2 Multiplelayers, the Fried parameter

The extension to multiple layersis relatively straightforward. At the beginning of this section,
the complex amplitude at the exit of alayer at atitude /,, can berelated to that at the entrance
of that layer by multiplication with the phase disturbance,

Uy, (2) = Uy, (2)e Pmn () (2.18)
and the coherence function can be determined by

< q}hi+1 (l’/)\p*

hit1 (l’l + l’) >=< \I’hl(x/)\llz,(:li’ + l’) > < ei[¢hi+1(x/)_¢hi+l($/+w)] >

— < Uy, (&)} (2 + ) > e 2Ponin () (2.19)

Calculating the coherence function iteratively for al layers one obtains the coherence function
on the ground in the telescope aperture after propagation through N turbulent layers as

1

< Uo(2)Ui(a' + 2) > = e 2Ps0@) with
0

N
Dyo(z) = 2.91(27”)2 S 5hC2 PR, (2.20)
=1

The distances between the layers and the size of the diffraction structures are such that the prop-
agation of the complex amplitude has to be described by Fresnel diffraction. That means that
the complex amplitude on the ground fluctuates both in amplitude and in phase. The propaga-
tion of the coherence function through the atmosphere, however, isreduced to a simple product
of the coherence functions of the single layers, unaffected by Fresnel diffraction [73]. Thisre-
flects the general property of the coherence function that Fresnel terms cancel when describing
the propagation of the coherence function through space or through an optical system [53, 20].

In the case of acontinuous distribution of turbulence and of asource at zenith distance v one
obtains

Dyola) = 2.91(27”)%% 37 [ Oy, 2.21)
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Figure 2.3: Theintensity distributionin a seeing disk in arbitrary units calculated numerically

5/3
using the phase structure function Dy (z) = 6.88 ( ) / . The full width at half maximum

(FWHM) is approximately A/ro.

Fried further smplified the expression by introducing the quantity r,, called the Fried parameter
[16], which is defined by

27

ro = <0.423 (52 (cos )" / CZ(h)dh) - (2.22)

The wavelength dependence of r, is given by r, o« A%/® and the dependence on zenith angleis
ro o (cos )%/,
The phase structure function in the telescope pupil can now be expressed by

Dyolz) = 6.88 (1)5/37 (2.23)

To
and the coherence function in the telescope pupil is

To(a) =< Wo(a)Ui(a’ + o) >= ¢ MG,

(2.24)
If asingle star is observed through the telescope the turbulence limited point spread functionis
obtained by computing the Fourier integral of the coherence function over the circular telescope
aperture. Fig. 2.3 displays the turbulence limited point spread function, that is called the seeing
disk. A Gaussian function modelsthe seeing disk reasonably well. However, with the Gaussian
approximation the seeing disk converges to zero much faster than measured seeing profiles that
are better described by the Kolmogorov model. The full width half maximum (FWHM) of the
seeing disk is 0.98)\/ro corresponding in good approximation to a telescope with diameter r.
With ro oc A%/® the seeing is A /7 oc A~'/%, i.e. it is decreasing Sowly with increasing wave-
length.

Very often the power spectrum of the phase fluctuations is needed for analysis. Similar to
the calculation that related the Kolmogorov spectrum of refractive index fluctuations (Eg. 2.7)
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to the structure function of the refractive index (Eq. 2.10) the Kolmogorov power spectrum of
the phase fluctuations can be calculated [62], yielding

O(k) = 0.023 ry”/® k112, (2.25)

The integral over the power spectrum gives the variance of the phase. As noted above, the in-
tegral over ®(k) o k~'/3 isinfinite. This means, that the variance of the turbulent phase is
infinite which is a well known property of Kolmogorov turbulence. If the outer scale is finite
the (finite) variance can be calculated using the von Karman spectrum. In general, the phase
variance increases with increasing outer scale.

2.4.3 Anisoplanatic and temporal effects

Sofar we havediscussed asingle planewave originating fromastar at an angular distance~ from
zenith. By calculating the coherence function as the ensembl e average over many realisations of
the atmospheric turbulence we have effectively determined the time average and, thus, thetime
averaged seeing disk. A snapshot image of asingle random realisation of theturbulence displays
thewell known speckleimage caused by the quasi frozen turbulence of theatmosphere. Thelight
of astar at adlightly different angular position travels through dightly different portions of the
atmosphere — the more different the higher the contributing layers are — and displays a different
speckle pattern. However, the long time exposures of the two stars are identical as long as the
statistical characteristics of the turbulent layers, i.e. C?, do not differ. In speckle interferometry
this property allows the use of areference star that might be separated by several degrees from
the science object but that still has the same statistical parameters.

In adaptive optics systems the guide star hasto be very close to the observed object in order
to measure a wave-front that closely resembles the object wave-front. The two quantities, the
acceptable angular distance between the object and the guide star (the isoplanatic angle), and
the rate of the temporal decorrelation of the turbulence that determines the required frame rate
of the wave-front sensor camera, are the most important limiting factors for the performance.

The isoplanacy can be quantified in a very smple way: The displacement by an angle ¢ is
replaced by the lateral shift 0/ of the relevant layer at altitude 4, and the phase distribution in
the observing direction § + &’ can be expressed by a shift of the phase at 9

—

HT0+0) = (7 —0h,0). (2.26)

The angular phase structure function, describing the correlation between the phase distribution
iné and #’ can be written as

— —, —

Dy(0) = <[(F,0) = du(7 — 0h, 0] > .

5/3
= 6.88 (%) . (2.27)

o

The influence of different layerswith different wind speeds can be investigated by applying the
individual altitudes h; of the individual layers: with structure constants C'?. (see Eq. 2.20) and
performing the summation.
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For the simplest case of a single dominant layer at altitude /2 an isoplanatic angle can be
definedasf, = ro/h. Thus, if themainturbulent layer isat an altitude of 10km and rq = 60 cm,
which correspondsto 0.76” seeingin the near infrared at A = 2.2 um?, itisf, = 12”. Thisvaue
can only give an idea of the order of magnitude of the isoplanatic angle. In practical cases the
value depends on the particular composition of the atmosphere and the degree of the adaptive
correction. For low order adaptive optics, e.g. atip-tilt system or low atitude layers the angle
may be much larger.

Using the Taylor hypothesis of frozen turbulence the temporal evolution can be estimated.
The assumption isthat a static piece of turbulence moves with constant speed ¢ in front of the
telescope aperture. Then the phase at point ¥ at time ¢’ + ¢ can be written as

BE A + 1) = 6(F — TL 1), (2.28)
and the temporal phase structure functionis
Dy(vt) =< [¢(Z, 1) — ¢(T — o, V')]* > . (2.29)

Thetemporal differenceisthustransformedto adifferencein spatial coordinateswith the differ-
encebeing ¢t. The phase structure function dependsindividually on thetwo coordinates parallel
and perpendicular to the wind direction. In the direction of the wind speed a s mple estimate of
the correlation time similar to the isoplanatic angle above yieldsthe coherence time ry = ro/|4].
A wind speed of v = 10m/sec and a Fried parameter of r, = 60 cm give a coherence time
of 7o = 60 msec. In speckle interferometry, thisis approximately the exposure time that can be
used for single speckleimages. For adaptiveopticsthereciprocal of the coherencetimeindicates
the required bandwidth of the closed loop correction system. Greenwood [32], after more el ab-
orate analysis, gave a definition for the required bandwidth, the so-called Greenwood frequency
that is often used to specify adaptive optics system. For a single turbulent layer this frequency
is fa = 0.43v/rq (see Sect. 3.4.2). Multiple layers with different speeds are considered equiva-
lently to the case of anisoplanacy by applying individual speed vectorsto individual layerswith
structure constants C'7 .

The temporal power spectrum of the phase fluctuations can be calculated from the spatial
power spectrum &(|k|) (Eq. 2.25). With @ being e.g. parale to the « axis, one sets k, = f/v
and performs an integration over k, to obtain the temporal power spectrum &.( f) [11],

-8/3
@) =10 [ @(F o,k dh, = 0077 7™ ! (i) . (2.30)

v v

Thevariance of the phase fluctuationsistheintegral over thetemporal power spectrum. Asthere
isapolea f = 0 thisintegral is infinite which is the well known property of Kolmogorov
turbulence discussed above [85]. Thisintegral can be computed if the outer scale L, istaken to
be finite. As already noted, the Kolmogorov spectrum is not defined outside the inertial range
and the von Karman spectrum has to be used to perform the integration.

1The atmosphere transmits only certain bands in the infrared. One important band in the near infrared is the K
band at 2.2+0.2 um. Most of the numerical exampleswill be given for this band.
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2.5 Imagemotion

In the last section, the statistical properties of the propagating turbulent wave-front have been
described. When it comes to analysing the imaging process in the telescope, some assumptions
have to be made about the phase distribution in the telescope aperture. We assume that the tur-
bulent atmosphere can be represented by a single thin layer in the tel escope aperture neglecting
the effects of Fresnel diffraction, e.g. scintillation, discussed in Sect. 2.4 [73].

The average gradient of the phase distribution in the tel escope aperture determines the posi-
tion of theimage in the telescope focus. Although thisis alow-order effect of atmospheric tur-
bulence on the imaging process it isworthwhile discussing it in more detail asit determinesthe
requirementsfor wave-front sensors like the Shack-Hartmann sensor that rely on reconstructing
the wave-front from gradient measurements in the subapertures.

First we discuss the statistical properties of the gradient 0 of the wave-front without averag-
ing over the telescope aperture. The two components 4, and 4, as a function of the horizontal
coordinate ¥ = (x,y) are[73]

A0 A0

(gx(xvy) = _g a_$¢(x7y) and Gy(xvy) = _g 6_y¢(x’y) . (231)

The power spectra of the two vector components &, (E) and @, (E) are related to the power
spectrum of the phase @(||) by

By, (k) = Nk2O(|k]) and By, (k) = k2@ (|k]) , (2.32)
and the power spectrum & (k) is obtained by adding ®,, and ®;,, since ®;(k) = |¢,(k)|* =
| b, (F))? =+ | o, (K)|> = @y, (k) + Dy, (k) where &, isthe Fourier transform of the gradient 6( 7).
Itis

By (k) = 0.023\2 (k2 + k2)rg ™2k ~11/% = 0,023y k2, (2.33)

The effect of averaging the gradient over the telescope apertureis considered by convolving the
gradient in Eq.(2.31) with the aperturefunction A(%) that usually hasacircular shape. The cen-
tral obscuration usually can be neglected. The averaged gradient can be written as

—

6P (7) = / 0.(7)A(Z — &)da, (2.34)

where the superscript D indicates the average over the aperture D. For a point like aperture
the averaging process collapses yielding 02 (#) = 0,(z). The convolution transformsinto a
multiplication in Fourier space and one obtains the power spectrum of the phase gradient after
averaging with the tel escope aperture [54, 11]

2

®P (k) = 0.023\%r5 5/
P (k) = 0.023\%r; s

with .J; thefirst order Bessel function describing the diffraction limited point spread function, the
Airy disk, which is the Fourier transform of the circular aperture [5]. The Bessel function acts
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likealow passfilter onthe power spectrum. The contributionsat high frequencies corresponding
to small distancesin the turbulent wave-front are reduced as the averaging process smoothes the
gradients. At low frequencies, i.e. for large distances the effect of the pupil averaging is much
reduced and the power spectrum is unaffected.

The variance of the image motion can be calculated by integrating over the power spectrum
®% (k) yielding the two-axis variance of the position ¢ of theimage centroid as [88]

(AB)? = 0.34(X/r0)*(D/ro) " [arcsec?], (2.36)

with A\ /ro theseeingin arcsec. The quotient D /rq will appear in all those formulasthat describe
the imaging process in the telescope. In practical cases it can be calculated quite easily as it
relates the size of the seeing disk ) /ro to the FWHM of the Airy pattern A/ D, 555 = D /ro. In
0.76" seeing at 2.2 um ona3.5-m telescopeitis D/ro = 6. The dependence of (A#)? on D~1/3
means that the variance of the image motion increases with decreasing telescope diameter. Itis
important to note that (A#)? is independent of wavelength; the image motion in arcsec is the
same at all wavelengths. Thus, wave-front sensors like the Shack-Hartmann sensor measuring

the wave-front gradient can be operated in the visible for corrections at all wavelengths.

25.1 Temporal evolution of image motion

The Taylor hypothesis of frozen turbulenceis used again to estimate the effect of moving turbu-
lence. Thetemporal power spectrum of the averaged phase gradient can be calculated similar to
the one of the phase (Eq. 2.30) by integrating over the direction perpendicular to the wind speed.
Itis

D0(f) = 1fv [ @F(f/v,k,) dk,. (2:37)

Thisintegral cannot be solved in closed form. Tyler [88] gave an approximation for the power
spectrum at low and high frequencies that can be simplified by assuming that there is one dom-
inant layer with wind speed ¢ [22]. Then, the power spectral density of the centroid motion in
the two regimes are

Py = 0.096(r0/ﬁ)l/?’()\/ro)zf_Q/?’[arcsecz/Hz],
Phi = 0.0013(D/ﬁ)_8/3()\/7“0)2(D/ro)_1/3f_11/3[arcseCQ/Hz], (2.38)

where \/rq isthe seeing inarcsec. InFig. 2.4, Py and Py, aredisplayed and compared to
measured power spectra. |n the low frequency region the power spectrum decreases with f—2/3
and it is independent of the size of the aperture D. In the high frequency region the spectrumis
proportional to f~'/2 decreasing with D=2, Thisillustrates the influence of the Bessel function
asalow passfilter that |leaves thelow frequency region unaffected by the aperture and that takes
effect as soon as the frequency isbeyond avalue of f; = 0.240/D which isthe transient region
between the two approximations. This value agrees well with the value given by Conan [11].
Because of the steep slope (< f~'1/%) of the power spectrum at frequencies beyond the transient
frequency f; the contributions to the image motion are very small. Thus, atip-tilt system that
stabilises the image motion must have abandwidth of approximately f; to correct for most of the
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turbulence induced image motion. In Chapter 3, the bandwidth requirements will be discussed
in greater detail.

Theincreasing variance of theimage motion with smaller apertures D can now be attributed
to anincrease of the power spectrumin the high frequency region. In order to stabilise theimage
motion on smaller telescopes the correction frequency has to be higher. It isinteresting to note
that if the telescope aperture is larger than the outer scale of turbulence L, the image motion
is reduced below the values predicted by Kolmogorov statistics. This affects in particular the
fringe motion on telescope interferometers with a baseline longer than L.

One axis power spectra of image centroid motion
1 T T T T

01

0.01

0.001

Power[arcsec2/Hz]

1e-05

1e_06 1 1 1 1 : I
0.001 0.01 0.1 1 10 100
Frequency[Hz]

Figure2.4: Measured power spectraof theimage centroid motion on a 3.5-m telescopefor dif-
ferent sampling frequencies. The dashed lines display the approximation for the same seeing
and wind parameters. From the transient frequency of about f; = 1Hz and D = 3.5m the
effective wind speed can be estimated to be ¢ ~ 14 m /sec. The measurements agree very well
with each other and reasonably well with the theoretical curve (dotted line) [22].

2.6 Zernikerepresentation of atmospheric turbulence

In thetheory of optical aberrationsZernike polynomialsare used very often to describe the aber-
rations. They were introduced in 1934 by F. Zernike who deduced them from the Jacobi poly-
nomials and slightly modified them for the applicationin optics[97]. Zernike polynomialshave
the advantage that they are mathematically well defined and that the low order terms are related
to the classical aberrations like astigmatism, coma and spherical aberration.

Since the Zernike polynomials are defined on the unit circle and since we are interested in
the turbulent wave-front in the circular telescope apertureit is useful to express the wave-front
intermsof the Zernike polynomials. The influence of the central obscuration is negligible. Noll
[62] introduced a normalisation for the polynomialsthat is particularly suited for application to
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Kolmogorov turbulence. In this normalisation the rms value of each polynomial over the cir-
cleisset equal to one. The Zernike polynomialsform a set of orthogonal polynomialsand itis
convenient to write them as a function of p and ¢:

Ziw = V41 R™(p)V2 cos(mb), for m # 0,
Zi.. = Vn+1R"(p)V2 sin(mb), for m # 0, (2.39)
Z; = Vn+1R)p), form =0,

where

n—m

2 —1)¥(n — s)! _
Ry (p) = Z:;) !(@ _)SS; (# Y 4

2, (2.40)

Table 2.1 showsthelow order Zernike polynomials where the columnsm indicate the azimuthal
orders and the rows . the radial orders, and Fig. 2.5 displays them graphically.

n|m=0 1 2 3
0| Z=1
(piston)
1 Zy=2p cos b
Z3=2psin
(tipand tilt)
2| Z,=V3 (2p* — 1) Zs=\/6 p?sin 20
(focus) Ze=V6 p? cos 20
(astigmatism)
3 Zr=\/8(3p>—2p) sin 0 Zo=\/8p" sin 30
Z8:\/§(3,03—2,0) cos 0 Z10=V/8p> cos 30
(coma) (trifoil)
4 | Zy=V5(6p*—6p+1)
(spherical aberration)

Table 2.1: Zernike polynomials Z; for j = 1 to 11. » istheradial order and m the azimuthal
order. The modes are ordered such that even j correspond to the symmetric modes given by
cos m# and odd 5 to the antisymmetric modes given by sin 6

It isinteresting to note that every Zernike polynomial is balanced in order to minimise the
remaining aberration. For instance, if pure comais considered to be « p?, the Zernike coma (7
and Z3) has an additional linear term p that tilts the wave-front so that the contribution of this
aberration is minimised in the sense that the integral over the square of the aberration 72, the
phase variance, is at aminimum. In Sect. 3.1 we will come back to this property.

The polynomial expansion of the arbitrary wave-front ¢(p, ) over the unit circleis defined
as

50 0) = 3 aiZilp,0), (2.41)
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Examples of Zernike modes
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Figure2.5: Zernike polynomialsj = 2 to9.




20 CHAPTER 2. IMAGING THROUGH ATMOSPHERIC TURBULENCE

Ay = 1.030(D/rg)?/?

Ay = 0.582(D/ro)?® Ay — Ay = 0.448
A3 =0.134(D/ro)*? Az — Ay = 0.448
Ay =0111(D/ro)*?  Ay— A3 =10.023
As = 0.0880(D/ry)*? A5 — Ay =0.023
Ag = 0.0648(D/ro)>?  Ag — As = 0.023
A7 =0.0587(D/ro)*® Az — Ag = 0.0062
Ag = 0.0525(D/ro)*®  Ag — A7 = 0.0062
Ag = 0.0463(D/ro)*®  Ag — Ag = 0.0062
Ajp = 0.0401(D/ro)*?  Ajp — Ag = 0.0062
Ay = 0.0377(D/ro)® Ay — Ay = 0.0024

Table 2.2: Theresidual variance A ; of Kolmogorov turbulence after the first j Zernike modes
are removed. The difference in the right column illustrates the strength of the single modes
demonstrating that modes of equal radial order contribute the same amount to the variance.

and the coefficients «;, using the orthogonality, are given by

a; = — o(p,0)Zi(p,0)pdpdd . (2.42)
The convenienceof the Zernike polynomialsliesin the property that, followingfromtheKol-
mogorov statistics, one can determine individually the power in every single mode like tip-tilt,
astigmatism or coma. One can then immediately calculate the residual aberration after correct-
ing a specified number of modes with an adaptive optics system. This computation was done by
Noll [62]. The variance of the residual aberration is expressed as the variance of the difference
between the uncorrected phase and of the removed modes. If the aberration that is due to the
first J Zernike polynomialsis written as

J

b5(p.0) =D aiZi(p,0), (2.43)

=1

the variance of the remaining aberrations can be expressed as
2= // < [6(p,0) = dslp. O)) > pdpdod. (2.44)
aperture

Asaready noted, the variance of the phase fluctuations < ¢*(p, #) > isinfinite. Theanalysisin
termsof Zernike polynomialsshowsthat theinfinity liesin the piston term. Removing the piston
term gives afinite value for the variance of the residual aberration. The residual variancesin
Table2.2 aregivenintermsof (D/r,)°/* asthe Zernike polynomial s are defined in the telescope
aperture D. Theright column of the table shows the differential improvement. It showsthat the
differences are constant for the same radial degree .

For the removal of higher orders Noll gave an approximation for the phase variance [62], as

Ay~ 0.2944 V32 (D [ro )" [rad?] . (2.45)
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0.4557 0 0 0 0 0 —0.0144 0 0 0 0

0 0.4557 0 0 0 —0.0144 0 0 0 0 0

0 0 0.0236 0 0 0 0 0 0 —0.0039 0

0 0 0 0.0236 0 0 0 0 0 0 0

0 0 0 0 0.0236 0 0 0 0 0 —0.0039

0 —0.0144 0 0 0 0.0063 0 0 0 0 0
—0.0144 0 0 0 0 0 0.0063 0 0 0 0

0 0 0 0 0 0 0 0.0063 0 0 0

0 0 0 0 0 0 0 0 0.0063 0 0

0 0 —0.0039 0 0 0 0 0 0 0.0025 0

0 0 0 0 —0.0039 0 0 0 0 0 0.0025

Table 2.3: Covariance matrix between the first 11 Zernike modes as given by N. Roddier. For
an optimal reconstruction of the turbulent wave-front the covariance matrix should be diagonal.

Correcting an increasing number of Zernike modes changes the shape of the seeing disk in an
unexpected way. Rather than narrowing the seeing disk in total, a diffraction limited spike ap-
pears on top of the seeing disk. This spike becomes more dominant with increasing number of
corrected modes, until the seeing hal o disappearsfor perfect correction. All the corrected images
in Chapter 4 show this property. Since correcting the low orders does not affect r, very much it
isintuitively understandable that the seeing disk, as \/r,, remains constant.

The image quality is usualy expressed in terms of Strehl ratio that defines the peak of the
point spread function normalised to the peak of the diffraction limited point spread function. The
aberrations can be related to the Strehl ratio in a simple way using the Maréchal approximation
[5]. If theresidual variance is smaller than about 72 /4 the Strehl ratio is approximated by

S = exp(—(Ad)?) . (2.46)

For a numerical example, we assume an adaptive optics system that perfectly corrects the first
10 Zernike modes. The Fried parameter is v, = 60 cm which is typical in the near infrared
and corresponds to a seeing value of 0.76”. On a 3.5-m telescope the residual variance equals
0.0401(D/r¢)%/* = 0.76 rad* and the Strehl ratio is 47%.

Expressing the wave-front as a Zernike polynomial the covariance matrix of the expansion
coefficients < «a;a;; > plays an important role. This matrix can be calculated using the power
spectrum of the phase fluctuations[62, 78]. It turnsout that the covariance matrix isnot perfectly
diagonal. This means that when describing Kolmogorov turbulence with Zernike polynomials
the Zernike modes are not statistically independent with the consequence that the wave-front re-
construction from the wave-front sensor datais sub-optimal. Noll found Karhunen-Loéve func-
tions to be more appropriate as they have a diagonal covariance matrix. Their disadvantage in
practice is that they cannot be obtained in closed form. Using a method by N. Roddier [78] to
approximate the Karhunen-Loéve functionsin terms of Zernike functions, Lane and Tallon have
shown that when correcting morethan ~20 modestheresidual aberration startsdecreasing faster
when using Karhunen-Loéve functions[49]. Inlow order systems, thisdifferenceis negligible.
Instead of applying Karhunen-Loéve functions one can also measure the covariance matrix by
using actual atmospheric data and feed this information into the reconstruction algorithm [50].
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2.6.1 Temporal evolution of Zernike modes

Using the same formalism asfor the analysis of the temporal characteristics of theimage motion
(Sect. 2.5) the temporal evolution of Zernike modes can be calculated [62, 77, 11]. The results
are important for the specification of the bandwidth requirements of adaptive optics systems.

Inthelast section, the covariance matrix of the Zernike coefficients < a;a; > wascalculated.
Now we are interested in the temporal correlation of single Zernike coefficients < a;(¢')a;(t' +
t) >. Thus, equivalent to the calculation of the power spectrum of the image motion (Sect. 2.5)
we determine a Zernike coefficient as the convolution

alp0)= [ S0 0V Zlp— 0~ o0 (247)

Atp = 0 and § = 0 thisequation is identical to the calculation of the Zernike coefficient «;
(Eq. 2.42) that can be used (see Noll [62]) to calculate the variance of the Zernike modes (see
Table. 2.2). The temporal covariance follows from the spatial covariance < a;(p’,6") ai(p’ +
p, 9 + 0) > by using the frozen turbulence hypothesis similar to the calculation of the image
motion (Eqg. 2.37).

The resulting power spectracannot be givenin closed form. The numerical resultswere dis-
cussed by Roddier et al. [77] and Conan et d. [11], and they are briefly summarised here. The
gpectra show a dependence on the radial degree of the Zernike polynomial at low frequencies
and a high frequency behaviour proportional to f~'7/3 that isindependent of the Zernike mode.
Inthelow frequency domain, polynomialswith aradial degreeof n = 1, Zerniketipandtilt (see
Table 2.1) decrease with f~=2/. Higher order polynomials have adightly different characteris-
tic depending on their azimuthal dependence; all radially symmetric polynomialsgo with f©, all
otherswith f°, with /% or with f? depending on the wind direction.

Thetransient frequency between the high and thelow frequency regionscan be approximated
by

fi~0.3(n+1)8/D, (2.48)
where . is the radial degree of the Zernike polynomials. The transient frequency is approxi-
mately equal to the bandwidth required to correct for the Zernike mode in an adaptive optics
system.

Averaging the Zernike spectra for a given radial degree shows the mean behaviour for this
degree. Thisbehaviour can also be modelled when using amulti layer model with different wind
directionsthat is morerealistic than the single layer approach [11]. The curvesare displayed in
Fig 2.6. It showsthat for n > 1 the power spectra are all proportional to f° at low frequencies.
The curves are scaled in order to give the proper variance of the single modes (see Table 2.2). It
isinteresting to note that at high frequencies the power spectraincrease only very slowly with
n. Theincreasein transient frequency f:, and thus in bandwidth is partially compensated by the
decrease in variance at higher radial degrees. Conan et al. [11] argue that for a given degree of
correction all modes have to be corrected with approximately the same bandwidth. Otherwise
the residual variance from e.g. the tip-tilt correction could be larger than the uncorrected vari-
ance of ahigh order mode. Thisisparticularly interesting for laser guide star systems, when the
tip-tilt correction is decoupled from the high order correction. If the image motion is not cor-
rected very accurately the quality achieved with the higher order correctionsis easily destroyed.
We will come back to this point in Sect. 3.4.
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Figure 2.6: Zernike polynomial mean temporal power spectrum in a given radial degree » for
n=1, 3, 9. The spectraare normalised to the turbulence variance of one polynomia of the con-
sidered radial degree: ¢/ D = 10 Hz. The asymptotic power laws and the cutoff frequenciesare
indicated. Thefigureistaken from Conan et al. [11].

It is interesting to compare the high frequency behaviour of the image motion power spec-
trum (Eq. 2.38) that goeswith f~'1/2 to the f~'7/> decay of the Zernike tip-tilt terms. One can
show [28], that the image centroid that usually characterises the image motion is the sum of
Zernike-tilt, -coma and other higher order terms. The slower decrease can then be attributed
to the sum of the single power spectra with increasing transient frequencies f;. In the low fre-
quency region the f~2/% dependence of the image motion power spectrum remains unchanged
as al high order terms have much smaller contributions here.

2.7 Simulation of Kolmogorov turbulence

There aretwo main techniquesfor the ssmulation of Kolmogorov turbulence. Thefirst technique
was presented by McGlamery in 1976 [57]. He used the statistical characteristics of the power
spectrum of the phase fluctuations ® (k) (Eq. 2.25) to create the Fourier spectrum of the turbulent
phase. The difficulty arises from the very low spatial frequencies % that cannot easily be repre-
sented by anumerical array of limited size. The smallest frequency in anumerical array of size
N isrepresented by asinewave with aperiod of exactly N. Puretilt termsthat carry avery large
portion of the turbulent phase fluctuations (see Sect. 2.6) cannot be simulated with this method
unless very large phase screens are used of which only a very small portion is applied. In the
origina paper by McGlamery the phase screen was 16 times larger than the ssimulated aperture.
This approach is not very efficient and takes alot of computing time.

An extension to lower frequencieswas presented by Lane et al. [48]. Here the fact was used
that very low freguenciesin the image domain show up as subharmonicsin the Fourier domain.
This method has al so been extended to temporal evolution [25] and multi layer smulations[4].

A second method with a completely different approach, based on Zernike polynomials, has
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been proposed by N. Roddier [78]. He starts from the Karhunen-Loéve functions that can be
simulated since their covariance matrix is purely diagonal. The simulated functions are then
composed to form the Zernike polynomials. This makes it easy to investigate adaptive optics
systems with different degrees of correction, asthe corrected modes can most easily be removed
in the smulation. However, if the outer scale is reduced to some finite value the covariance
matrix has to be recalculated and the simulation hasto be redone.

In the simulation method based on the addition of subharmonics in the power spectrum of
the phase fluctuations the outer scale L, can be adjusted smply by limiting the lowest spatial
frequency to k > L',

Sampled representations

In conventional spectral analysis, a phase screen over afinite circular aperture with a diameter
of D would be completely defined by samples of its spectrum on a rectangular grid spaced by
1/D [6]. A difficulty with this approach becomes apparent when one considers the effects of
changing the size D of the smulated phase screen. Asnoted by N. Roddier [78] it is convenient
to scale the resulting phase screen values by (D /rq)*/® to simulate alarger aperture (or asmaller
)

In practice the actual sampled approximation to the Kolmogorov power spectrum is given

by,
5/3
®(i,5) = 0.023 (i—D) (3, 7)|1Y/3, (2.49)
0
where: and ; arethe sampleindices. Note that the variation of the sample amplitudeis solely a
function of D /rg.

The process of sampling numerically means to take the function f(x) at N discrete points
spaced equally by 1. Thiscan be expressed mathematically by first multiplying f(x) witharec-
tangular function of width N to represent the finite number of points, then by multiplying with
aDirac comb comby(7) ? to describe the sampling process with a spacing of 1. ; representsthe
integer values of =. Finaly, in order to represent the infinite repetition of the sampled function
when doing a digital Fourier transform one has to convolve the product with a second Dirac
comb comb(j/N) that repeats the sampled function spaced by V:

fi = f(x) rect (%) comb(j) @ comb(j/N) . (2.50)

Applying the discrete Fourier transform to this function, the Fourier spectrum of f (=) becomes

N/2

ik
o= Y e

“N/2
= (f(R) @ sinc(TR) @ Comb(k/N)) comb(k), (251)

where k representstheinteger valuesof R andthesinc(.) functionisdefinedassinc(z) =sin(x)/z.

2The Dirac comb isdefined as: comb(j/W) = >,2__8(j — kW)
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a) b)
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Figure 2.7: Fourier transforms of a cosine function with a period length of N (a) and 2N (c).
The Fourier transform of the cosinein (a) produces two delta peaks at the lowest frequency (b),
the Fourier transform of the function in (c) gives more than one peak (d) as described below. If
this processisreversed one can produce frequenciesin image space with aperiod length larger
than the array.

The Fourier transform f( R) of f(z) isconvolved with the Fourier transformsinc(w R) of the
rectangular function rect (%) . Thetwo Dirac combs make sure that the product of the convolu-
tion is sampled with a spacing of 1 and that the sampled spectrum is repeated ad infinitum with
aspacing of .

If we have a cosine function with a period of N, itis f(z) = cos(27 %) and its Fourier
transform f(R) = 1(6(R+1) + 6(R —1)). Then the convolution product is

A

f(R) @ sinc(m R) = sinc(m (R+ 1)) 4 sinc(n (R—1)) . (2.52)

The multiplication of the convolution product with the Dirac comb comb(k) gives the classi-
cal result for the Fourier transform of two cosine functions: two §-functionsat +1 and -1 (see
Fig. 2.7b) as the sinc-function has zero values exactly at the positions of the -functions of the
Dirac comb.

In the case of acosinewith twice the period length, f(z) = cos(275%;) its Fourier transform
isf(R) = 1(6(R+1/2)+6(R—1/2)) and theproduct of the convolutionissinc(m(R+1/2))+
sinc(m (R —1/2)). Inthis case the multiplication with the Dirac comb comb(%) gives morethan
two values because the zero values of the sinc-functionsno longer coincide with the §-functions
of the Dirac comb. Theresult isdisplayed in Fig. 2.7d.

Essentially what is required is still to generate the sampled form of the Kolmogorov spec-
trum, except this should be done after it has been convolved with the Fourier transform of the
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aperture. Sampling at this stageincorporatesthe effects of frequencieswith aperiod greater than
the aperture.

Turbulence smulationswith adjustable outer scale

The turbulent phase distribution ¢(%) is generated by first creating Gaussian distributed ran-
dom numberswith the variance of one for the real and for the imaginary part of acomplex ran-
dom number. These numbersare multiplied with the values of the Kolmogorov power spectrum
o( |l§ |) so that the average over many realisations forms exactly the power spectrum. The mean
of the random number at a frequency k; is set equal to the function value (|ko|). At k| = 0
the function is set to zero which is equivaent to setting the average phase to zero. In Sect. 2.6
it was discussed that the piston term of the Zernike polynomial is solely responsible for the co-
variance of the phase fluctuations going to infinity. Setting the phase to zero removes the piston
term without affecting the quality of the smulation with respect to the imaging process.

The square root of the power spectrum s taken to obtain the modulus | (& ) | of the complex
Fourier transform of ¢(Z). A random phase v (k ) with uniform distribution is added, since only
the power spectrum is defined in the Kolmogorov theory. The Fourier transform of this com-
plex field, with the decomposition in thereal and imaginary part, gives two distinct realisations
of theturbulent phase distribution. This phase distribution, however, |acks thelong distance cor-
relation inherent in Kolmogorov turbulence, because the longest period that can be modelled is
given by the reciprocal of the smallest frequency in the spectrum. Thus, the slope in the phase
of the telescope aperture, responsible for a shift of the centroid of the speckle image, cannot be
modelled unlessthe array size taken for the power spectrum is many timeslarger than the actual
telescope aperture.

This restriction is circumvented by the addition of subharmonics. One has to introduce a
weighting function because the square of size 1x1 around the origin (0,0) in the discrete array
of the frequency space is now represented by a number of samples, i.e. the number of added
subharmonics, and not only by the single sample at (0,0). We have chosen to replace the sin-
gle sample by nine subsamples at (-1/3,-1/3), (-1/3,0), (-1/3,1/3) etc., each representing 1/9 of
the square. Thus, each contribution has to be weighted down by 1/9. The addition of further
subsamples can be done correspondingly, i.e. subdividing the remaining patch of size 1/9 at the
origin again into nine subsamples each of size 1/81. Thelow frequenciesinvolved in thissecond
step are (-1/9,-1/9), (-1/9,0), (-1/9,1/9) etc. and the weighting factor is 1/81. This process can
be repeated until the peak at the origin of the power spectrum is sampled satisfactorily. In our
calculation, we went down to 1/3° requiring a weighting factor of (1/3°)2.

The complete spectrum, including the contribution of the subharmonics to the frequencies
on the discrete array, becomes

, 9D
Seom(k 1) = 10.023 ) (e, 1)[~11/5e 005

(o
(

qgsub(k,l) = +/0.023 2r0 ) sinc( ks))sinc(m(l — 15)) %
W (ks, L)| (ks )| H6gr ke te)
(k1) = oome(ksl) + doun(k, 1), (2.53)
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where (k,l) is the vector coordinate of the discrete array and W (&, () isthe weighting factor of
the added low frequency (k.. ().

Temporal evolution

This simulation technique can easily be used to model the temporal evolution due to the shift of
frozen turbulence[25]. The shift of the phase screen is performed in frequency space by adding
alinear function to the phase of the complex spectrum. Then the spectrum becomes

Qgshift(kv l) = ngld(ka l)€27rikNS/N ) (254)

where N, isthe number of pixels that the phase screen has to be shifted in the direction of the
coordinate & and N* isthe size of the array. Since the shift is performed in Fourier space (&, 1),
N, isnot restricted to integers. Fig. 2.8 displaysthe temporal phase structure functionfor differ-
ent numbers of subharmonics aswell astheideal curvefor asingle frozen layer (Eq. 2.29) with
acoherencetime 7, = 50 msec (according to the parameters of the smulation r, = 0.35m and
v = 7 ml/sec). The addition of subharmonics gives a much better fit to the ideal curve. Thus,
for aphase array only four timeslarger than the tel escope aperture the addition of subharmonics
isessential for agood estimate of the temporal phase structure function.

25.01
D (p(r) 1
20.0
15.0

10.0-
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0.0 - 1 T T T 1 T T T T T T T T T
0.0 25.0 50.0 75.0 100.0
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Figure 2.8: The temporal phase structure function D ,(7) for different numbers of additional
low frequencies. The dashed linerepresentsthe theoretical result. The upper solid line displays
our result of two sets of additional low frequencies are used. The lower solid line shows the
phase structure function without any additional low frequencies. Although the phase array that
was used for the simulation is four times larger than the aperture, the addition of subharmonics
is essential for a good estimate of the temporal phase structure function.

To model the statistical evolution in the phase screen rather than assuming the frozen turbu-
lence, the random numbersin its Fourier spectrum can be evolved by using a Markov process.
Starting with a phase screen created by using the procedure described in the last section, a sec-
ond set of numbers ¢(k, [) is created and they are combined with the old spectrum to obtain the
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result ¢new (K, 1) using the procedure

A~ A~

anew(ka l) _ quhift(kv l) + a(kv l) qb(kv l)7 (255)
L+ a?(k, 1)

where a(k,l) = M x 2/N x |(k,!)| isthe decorrelation factor that affects the velocity of the
evolving process and N? isthe size of the array. We have set « proportional to |(k, )], so that
small structuresrelated to high spatial frequenciesdecorrelate faster than large structures (which
makes sense physically). M can be set to match the short time constant of measurements. This
method has been used to model the temporal intensity correlation of speckle images[25] and it
has been shown that ashort time scal e of theorder of 10 msec, associated with an evolution of the
wave-front, and along time scale of the order of 1sec, associated with the moving wave-front,
can be distinguished.



Chapter 3

Elements of Adaptive Optics Systems

The requirementsfor the components of adaptive optical systems can be deduced from the dis-
cussion of imaging through turbulencein Chapter 2. The emphasisinthefollowingis put onthe
requirements for wave-front sensing and reconstruction, and on the closed loop operation.

The chapter is organised as follows: we start the discussion with a closer look at image mo-
tion sensors that are called tip-tilt sensors as they measure the sope of the incident wave-front.
Although these sensors seem to be very primitive since they just measure the image position
many times per second they are discussed here because they form the basis for the measurement
principle of the Shack-Hartmann sensor, and because all the properties of closed loop systems
can be understood in a very intuitive way. Furthermore, the discussion of peak-tracking allows
some interesting insight into the imaging process.

We then present three higher order wave-front sensors, the Shack-Hartmann sensor, the cur-
vature sensor and the shearing interferometer. A short introduction to control loop theory is
given and theerror budget of adaptive opticssystemsisinvestigated. The principleof laser guide
star systems and the deformable mirror design are discussed before, finally, methods for multi-
layer adaptive optics are presented.

3.1 Tip-tilt sensors

3.1.1 Centroidtracking

The measurement of theimageintensity centroid after thelight has passed through either the full
aperture or a sub-aperture in a Shack-Hartmann sensor provides an estimate of the wave-front
dope. The centroid, or first-order moment A/, of theimage intensity /(w, v) with respect to the
x-directionin theimage, isrelated to the partial derivative of thewave-front in thefull telescope
aperture by [64]
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Figure 3.1: Calculated Strehl ratios of tip-tilt corrected images using peak tracking, Zernike
tip-tilt tracking and centroid tracking. For comparison the Strehl ratios for uncorrected images
are displayed, too. Tip-tilt tracking achieves more than 10% Strehl ratioup to D /ry = 6, what
correspondsto aseeing of 0.76” at 2.2 um on a3.5-m telescope. Beyond D /ry = 10, only peak
trackingimprovestheimage noticeably. Centroid tracking, being affected by Zerniketip-tiltand
coma, performs a little bit worse than pure Zernike tip-tilt tracking. The latter can be realised
by stopping down the beam in thetip-tilt camera to about 80% of the full aperture.

with f thetelescopefocal length. Taking the derivatives of the Zernike polynomiaswefind [28]
that

MxO(Cl2—|-\/§G8—|-..., (3.2

where a, isthetilt term and s isthe comaterm of the Zernike polynomialsin Table 2.1. Since
the optimal tip-tilt correction is done with the Zernike tip-tilt terms alone, using the image cen-
troid over-compensates for coma. It was discussed in Sect. 2.6 that Zernike comais balanced in
such away that the aberration is minimised. Affecting this balance by tilting the wave-front as
aresult of theimage centroid measurement increases the wave-front variance by an amount that
istwice aslarge as the one of the unaffected comat. However, the influence of the comatermis
relatively small. With the residual variance of the phase ¢ due to coma (0.0062(D/r)*/*, see
Table 2.2), the additional phase variance from both comatermsa, and as is

o2 o =2(0.0062 + 0.0062)(D/r)* *[rad?]. (3.3)

coma

Adding this expression to the variance o . = 0.134(D/r,)*/® that remains after perfect tip-
tilt correction (see Table 2.2), the residual phase variance after tip-tilt correcting by tracking the
image centroid is

O-Sentroid = 0-13.0. + Ugoma = 0.158(D/r0)5/3[rad2]. (34)
This expression was derived in [22] with a minor numerical inaccuracy. Using the smulation

method for atmospheric turbulence described in Sect. 2.7 we calculated Strehl ratiosfor varying
seeing conditions displayed in Fig. 3.1. Inthe K band at 2.2 ym, r( iS60cm when the seeing

1Tilting the wave-front to compensate for /2 ag meansto add aterm /2 2p to the Zernike comaag. Thewave-
front variance of the tilted coma isthree times larger than the balanced Zernike mode. That means one has to add
two times the variance of that mode.
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is0.76". For atelescope diameter of 3.5m itis D/ro, = 6, and the Strehl ratio achievable with
centroid tracking isthen 7% (see Fig. 3.1). Thisismore than afactor of two improvement over
the uncorrected case with S = 2.6%. However, for dightly better seeing of 0.6” at 2.2 um,
correspondingto ro = 75 cm (and D/rq = 4.7), the uncorrected Strehl ratio is 4% and centroid
tracking improvesthe Strehl ratio by afactor of threeto S = 13%. Thisisillustrated by the sope
of the curvesin Fig. 3.1: The Strehl ratio for centroid tracking decreases faster with D /rq than
the Strehl ratio of the uncorrected image. Thus, tip-tilt corrected images are more sensitive to
varying seeing conditions than uncorrected images. Short time seeing variations that are barely
noticed in the uncorrected image can cause a measurable peak intensity variation in the tip-tilt
corrected image.

If the Zernike tip-tilt coefficients are determined properly, the variance of the wave-front
phase is given by o2 . alone, and compared to centroid tracking, the achievable Strehl ratios
areimproved (see Fig. 3.1). Usually this measurement requires a high order wave-front sensor.
However, by changing the integration limits of the image centroid calculation in Eq.(3.1) one
obtains an unbiased estimate of the wave-front slope [22]. If the telescope aperture is stopped
down to about 80% (depending on the central obscuration) of the full diameter the image cen-
troid calculation in Eq.(3.1) becomes independent of the comaterm as. Sincethe guide star has
to be only about twice as bright as for the full aperture this method works on all but the faintest
guide stars. The tip-tilt system of the UKIRT? telescope is equipped with an aperture stop fil-
ter wheel with apertures stops of different size to measure the unbiased wave-front slope [27].
Simulations have shown that for 0.76” seeing the peak intensity of the Zernike tip-tilt corrected
image is improved to a Strehl ratio of 9.5% instead of 7% for centroid tracking. Fig. 3.1 illus-
trates the improvement that can be achieved.

3.1.2 Peak tracking

Peak tracking, better known as shift-and-add for image post-processing, providesahigher Strehl
ratio than centroid tracking. This hasbeen demonstrated by Christouin acomparativestudy [8],
and thisiswell known to observers who use shift-and-add.

In the terminology of wave-fronts, the better performance of peak tracking can be explained
by using an error measure that takes the periodicity of the light wave into account [21]. Deter-
mining the tip-tilt term of a Zernike polynomia means minimising the residual aberration re-
gardless of the wavelength. The practical consequence is that one can use atip-tilt sensor in the
visible for observationsin the infrared.

However, if thetip-tilt term is determined by minimising the residual aberration modulo 2
we find that this tip-tilt term coincides with the position of the brightest speckle. The general
relationship between the complex amplitude in the telescope pupil and the intensity distribution
in the focal planeillustrates this effect. The image intensity is related to the phase ¢(&) in the
pupil plane through a Fourier transform (see Sect. 2.1):

2

(@) = / o esp(i0(F) exp(2ridi) di] (35)

2UKIRT is the United Kingdom Infra Red Telescope on Mauna Kea, Hawaii. It has a 3.8-m primary mirror.
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Shifting the image by adistance 5'is equivaent to adding alinear term, the wave-front tilt 27 3%
to the phase. The intensity at the image center « = 0 as afunction of the wave-front tilt is then

2

I5(0) =

/ exp(i(p(Z) + 27 37) exp(2midU) | g=0 d¥
aperture
2

/a - expli(9(F) + 2n57) d| (3.6)

We can now try to maximise theimageintensity by finding the appropriate shift vector 5. Since
shifting theimage meanstilting the wave-front the variance of the new phase distribution ¢( ) +
2737 is different from the old one ¢(#). The image intensity is maximised by minimising the
phase variance [39]. Usually, this minimisation is done by minimising the absolute error

Fape = / (6(T) + 2757)° d7. (3.7)
aperture

This is another way of formulating the Zernike polynomials; the Zernike tip and tilt terms are
defined such that thiserror sumisminimal if the components of thevector s, s,. and s,,, are equal
to a, and as. For high quality optical systems with small aberrations this approach is appropri-
ate and, if the variance is smaller than about 72 /4, the Maréchal approximation can be used to
calculate the Strehl ratio [5]. Thus, minimising £, means to maximise the Strehl ratio .

Figure 3.2: The angular direction of the first minimum (&) and the first maximum (b) of the
diffraction pattern of arectangular dlit. Thetilted wave-front and the incoming plane wave are
displayed in the aperture. In (), the tilted wave lies within an interval of one A of the incom-
ing wave. In (b), the tilted wave-front extends beyond the one A interval and the effective part,
the wave-front modulo A, is displayed by the solid line. If the intensity in the direction of the
diffraction angleis interpreted as an aberration compared to the incoming plane wave then the
aberration of the wave-front modulo X\ determinestheintensity.

However, if the aberrationsarelarge there might be areasin the aperture where the aberration
o(Z) + 2n 57 islarger than 27. Then the minimum of £, usually does not coincide with the
peak intensity. In Eq.(3.6) only the difference modulo 27 determines the value of the complex
exponential under the integral. Therefore it is appropriate to minimise an error function that
weights the aberration modulo 27:

Fop = / (modyy (6(T) + 275T)) dA. (3.8)
aperture
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The smple example of aplane wave incident on arectangular dit of width D illustrates the
effect. Fig. 3.2 displaysthewave-front modulo 27 inthe dit aperturewhen the diffraction pattern
has its first minimum (in the angular direction A/ D) and its first maximum (at 2A/D). Tilting
the wave by 27 in our formalism means to calculate the angular distribution of the diffraction
pattern asafunction of s. For s = 0 theerror sum F.; (aswell as F,,.) iszero and theintensity
isat amaximum. Increasing the tilt angle increases the absolute error constantly. The effective
error first increases too, and the intensity decreases until the first intensity minimum is reached
for the diffraction angle A/ D, where E.¢ hasitsfirst maximum of 72 /3 (see Fig. 3.3). Fig. 3.2
shows that the peak-to-valley value of the aberrationisthen A. Increasing thetilt further reduces
the effective error until at the position of thefirst sidelobe of the diffraction pattern the effective
error reaches alocal minimumat 2A/D. One has to be very careful when adjusting a constant
¢ that can be added to the phase. This constant does not change the value of the intensity as
exp(2m o) can be put in front of the integral in Eq.(3.5). The variance calculation, however, is
affected by the average value of the wave-front modulo 2. The constant ¢, hasto be set such
that the average is zero and the aberrationis still intherange +7. In Fig. 3.2b the proper phase
distribution for atilt corresponding to thefirst sidelobe is shown in the dlit aperture.
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Figure 3.3: The effective error, i.e. the sum of the aberration modulo 27 for the diffraction
a arectangular dlit is displayed by the solid line. The gray lineisthe intensity distributionin
the diffraction pattern. The maxima of the error sum coincide with the minima of the intensity
pattern and vice versa.

Increasing s beyond the first maximum enlarges F.« beforeit isreduced again at the second
sidelobe. Thus, theintensity distribution in the diffraction pattern can be explained in terms of
the distribution of maximaand minimain the effective error sum E.g.

If positioning the brightest speckle at the image center provides the global minimum of the
error sum F.g, then every single speckle as alocal intensity maximum represents a local min-
imum of the error sum. Fig. 3.4 demonstrates this effect with a smulated speckle pattern with
D/ro = 24 corresponding to aseeing of 0.7 and an ry &~ 15 cm inthevisibleona3.5 m tele-
scope. Every pixel of the speckle patternin Fig. 3.4aistaken as shift vector 5;. Then the error
sum of the effective aberration E.g IS calculated and its square is displayed in Fig. 3.4b, where
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the coordinates represent the shift 3;. The agreement between the speckle as local maxima and
the minimaof the error sum isextremely good. Fig. 3.4c showsthe conventional error sum £,
of the absolute aberration. Thereis only one minimum of the error sum over the whole image.
The shift that corresponds to this minimum is the best conventional fit of a sope to the wave-
front, which isidentical to the tip-tilt term of a Zernike polynomial.

Figure 3.4: (a) Speckle pattern with D /ry = 24, (b), (c) the sums of the remaining wave-front
aberrations. The value at each coordinate in (b) and (c) represents the error sum if the corre-
sponding pixel of (a) isshifted to theimage center. In (b) the square of the effective aberration,
i.e. the aberration modulo 27, is shown, and in (¢) the absolute aberrationistaken. It isreadily
apparent that the minima of the error sum in (b) correspond to the positions of the specklesin
(8. The absolute minimum of the error sum in (c) indicates the position of the centroid of the
speckle pattern.

An empirical formulafor the residual variance of the wave-front phase when peak-tracking
is used to stabilise the image is derived from the values of the ssimulation [21] and it reads as

) T2 0.062(D/rg)>?
oz = —
peak T 3 1 4 0.062(D/r)5/3

[rad?]. (3.9)

The same formalism can be applied to include focus. The shift of the intensity pattern along the
optical axisis equivalent to defocusing which is considered by asquare term ¢|Z|* in the phase.
Now the error measure that has to be minimised reads as

Bl = / - (mods, (6(7) + 2n(3F + gl7)))” . (3.10)

In simulations of tip-tilt systems and of tip-tilt and focus systems, it has been shown that the
relativeimprovement of theimage quality in thevisible, when D /rq > 1, isremarkableif peak
tracking is used [21]. In aseeing of of 0.7” in the visible (displayed in Fig. 3.4) peak tracking
and focus correction increases the peak intensity tenfold.

For D/ry < 3, corresponding to a seeing better than 0.4” at 2.2 um on a 3.5-m telescope,
the Strehl ratio for peak tracking and for centroid tracking are about the same, and the position
of the brightest speckle and the centroid coincide (see Fig. 3.1). Then, theresidual aberrationis
smaller than 27 and peak tracking gives no advantage over centroid tracking.
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Fig. 3.1 displaysthe superior performanceof peak trackingwhen D /r, increases. For D /rq =
6, the seeing is 0.76"at a wavelength of 2.2 xm on a 3.5-m telescope. Then, the Strehl ratio is
15%, i.e. 6 timesthe uncorrected value. However, peak tracking requiresapixel sizein thetip-
tilt sensor that allows Nyquist sampling of the speckle pattern. Asfor D/r, = 6 roughly 122
pixels are required, the guide star hasto be at least 30 times brighter than for centroid tracking
with a quadrant detector, reducing the sky coverage drastically.

This concept can be extended to higher ordersthantip-tilt and focus. Itissuperior tothe con-
ventional error measure as long as the peak-to-valley value of the residual aberration is larger
than 27. However, asit isthe goal of most adaptive optics systems to reduce the error to much
less than 72 /4 which is equivalent to a Strehl ratio better than 10% the conventional error mea-
sure can be used without loss in performance.

3.1.3 Measurement noise

Theresidual variances of the wave-front phase for perfect centroid or peak tracking aregivenin
Eq.(3.4) and Eq.(3.9). To derive these expressions we assumed that the image centroid and the
peak were determined error free. For low light levels one hasto consider two types of measure-
ment errorsthat deteriorate the performance of the correction system: the photon noise o2, and
the read noise o*. These variances are given as variance of the wave-front phase due to photon
noise and to read noise of the intensity measurement. Primot derived these quantities assuming
that the seeing disk is approximately Gaussian and that it is centered [64].

Then the form of the phase variance due to signal photon noise is[80]

9 72 1 (aoD

CaEr

)2 [rad?], (3.11)

where N, is the total number of photoelectrons, a, the angular size of the image and D the
diameter of the aperture. In the diffraction limited case the image size o, isequal to A/ D and
the variance is proportional to 1 /N,. Inthe case of a seeing limited point source one can write

2 1 2
Uph = ?N—ph(D/To) . (312)
The wave-front variance as a function of the detector read noise ¢; can be written in asimilar
fashion [80]
Ty () (9)4[ & (313)
o, = 3 w0 \ N, - rad”|, .

with N7 the total number of pixels per Airy disk, and f the quotient between the area on the
detector used for the centroid calculation or the peak search, and the area of the seeing disk. If
for instance the (square) area on the detector is (2”)* in 0.7 seeing the quotient f is 10. The
case of background photo noiseistreated very similarly by replacing the detector read noise o
by the background noise ¢, [80].

Asalready noted the wave-front sensor usually operatesin the visiblewhilst the science cam-
eraworksintheinfrared. Inorder to convert thewave-front variancesto theinfrared they haveto
be multiplied by (Awrs/Ar)?. The number of pixels per Airy disk is determined by the optical
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design of the wave-front sensor. Asthe square of this number goesinto the variance calculation
it should be kept small.
The sum o2, of all static errors, the error budget, reads as

Uszt = UfQit + Uﬁh + 037 (3.14)
wherec?;, isc?,. .. fOr centroid tracking or o, for peak tracking. It isinteresting to note that

the variance due to read noise (o2 o (D/rg)*) depends much stronger on the seeing conditions
than o7, o (D/r0)%* and ol o (D/ro)?.

To have a better idea of the implications of the single error sources on the error budget we
discuss a numerical example for centroid tracking. The tip-tilt sensor is assumed to work in the
visible at 0.5um and the science camerain the infrared at 2.2 4m. The table summarises the
relevant seeing parameters.

Wavelength 0.5um 2.2um
Seeing 17 0.76"
D/TO 35 6

Thepixel sizeis0.72",i.e.N,, = 1/24 (sincethe FWHM is0.03” at 0.5 «m) and the size of
the detector area used for the centroid calculationis 37, i.e. f = 10. The error budget can now
be written as

A 2 ? 2
Uszt = 0.16 65/3—|- (ﬂ)z (%Jd(ﬂ)z (ﬂ) 354_|_ 7T__352)

AR Nph 2 Nph
2
o] 312
= 316+ (210—— | 4+ —. 3.15
( Nph) Nph ( )

If itisthegoal that the noise addslessthan 10%to thefitting error o2, . .., the number of photons
has to be N, ~ 2000 if the detector read noiseiso,; = 5 which istypical for CCD cameras.
Taking the atmosphere, the tel escope mirror coating and the quantum efficiency of CCD cameras
into account one finds that amy = 15 star provides about 2000 photoelectronsin 20 msec on
a4m-classtelescope [28]. The performance of the tip-tilt system at the UKIRT telescope with

similar specifications confirms this calculation [27].

3.2 Wave-front sensing

Three different types of higher order wave-front sensors are discussed in this section. Starting
with the Shack-Hartmann sensor thisis most commonly being used sinceit is conceptually sim-
pleand its propertiesare well understood, the curvature sensor isdescribed next. Thistechnique
wasintroduced by F. Roddier in 1988 [74]. The adaptive optics system installed at the CFHT 2 in
1996 wasthefirst large system to use acurvature sensor, and it has shown excellent performance.

3The CFHT isthe Canada-France-Hawaii Telescope on Mauna Kea, Hawaii. It has a 3.6-m primary mirror.
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The obstacle preventing the wide spread use of thistechniqueisthe very complicated theory be-
hind the concept. Also, according to Roddier, it issuited particularly for adaptive optics systems
correcting less than 40 modes [ 76].

Thelast wave-front sensor to bediscussed briefly isthe shear interferometer. Thissensor was
used especially in military systems. Thereis no civilian adaptive optics system that employs a
shear interferometer as wave-front sensor.

3.2.1 Shack-Hartmann sensor

The Shack-Hartmann sensor dividesthetel escope apertureinto an array of smaller subapertures,
and alendet array is used to produce multiple images (see Fig. 3.5). The centroid displacement
of each of these subimages gives an estimate of the average wave-front gradient over the sub-
aperture[64] that can be calculated using EQ.(3.1). Theimportant consequenceisthat the Shack-
Hartmann sensor is achromatic — the image movement is independent of wavelength — and that
extended sources can be used as long as they fit into the subimage boundary.

In practice, a Shack-Hartmann sensor is built by putting alendet array in the reimaged tele-
scope pupil. The subimages from each subaperture are imaged onto a CCD camera. The size of
the subimages has to be chosen such that the image motion even of extended sources does not
drive the images outside of the subimage boundary. The single axis rms image motion can be
calculated from the variance in Eq.(2.36); it is

A = 0.41(X/ro)(d/ro) ™ arcsec], (3.16)

where d is now the diameter of the subapertureand A /rq isthe seeing in arcsec. Af is between
0.2 and 0.4 times the seeing and the peak-to-valley image motion about six times this value.
Thus, the size of the subimage should be at |east threetimesthe seeing. If thesize of the extended
sources is likely to be larger than this the subimage size has to be chosen accordingly. Even
the solar surface can be used for wave-front measurement if a field stop and image correlation
techniques are used to determine the wave-front gradients. If the subimage size is very large
several sources can be observed independently alowing for isoplanatic effects to be measured
(see Sect. 3.7) [23].

The perfect information about the position of the subapertures with respect to the telescope
aperture alows one to calculate the interaction matrix O, linking the image positions with the
modes of the wave-front polynomial. However, this information might be difficult to obtain.
Therefore a different approach was realised in ALFA. Instead of calculating the subimage cen-
troid positionsfor the Zernike modes (see thefoll owing example) the deformablemirrorisdriven
to form these modes and the subimage centroids are then measured. This method is discussed
in larger detail in Sect. 4.2.

Asan example a2 x 2 Shack-Hartmann sensor ismodel | ed, subdividing the apertureinto four
quarter circles[29]. The integration in EQ.(3.1) hasto be performed over the subapertures, 1.e.
forp =0to1landd = 0ton/2 for thefirst subaperture. The centroid displacement in « for the

first subaperture therefore becomes
T 4 2 3 s
My = — — V6 V2 — s
1 2G2-|-\/§G4+3\/_(G5+G6)+2\/_(G7—|—G9)+\/§G8—|-
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Figure 3.5: Measurement principleof a Shack-Hartmann sensor. Theincoming aberrated wave
is subdivided by the lenslet array and theimage centroid in every subimageis shifted according
to the average wave-front slope over the subaperture formed by the lenslet.

As each lendlet yields two measurements, in « and in y, one obtains atotal of eight gradients.
Usually this system of eight equationsis writtenin matrix form

M4 a1
Myl a2
M, a3
My2 — ®Sh Cl4 (317)
MyS ag

with M the vector containi ng the measured gradients, @ the vector containing the coefficients of
the Zernike polynomial and O, the interaction matrix. The optima number of Zernike coeffi-
cients estimated from a 2 x 2 Shack-Hartmann sensor isnot 8 but 6 because the Zernike coeffi-
cients are not statistically independent. The non-diagonal covariance matrix (Table 2.3) shows
their interdependencies. Thus, theresidua aberration startsincreasing again (see Table 3.1) [47].
Asdiscussed in Sect. 2.6, with Karhunen-Loeve functionsthisincreaseis less severe, however,
with an increase in computational effort. Using the a priori knowledge about the correlation of
the Zernike coefficients «; it is possible to reconstruct the wave-front to a higher precision [50].
The measurement errors of the image centroid due to photon noise and read noise were de-
rived in Sect. 3.1.3. Since the reconstruction of the phase is made through a linear process the

noise of each subaperture measurement propagates linearly with
0l e = P(J) (072, + Uzh) , (3.18)

noise

where P(J) is the factor that describes the error propagation as a function of the number .J of
corrected modes. It depends on the properties of the system, like sensor and mirror geometry,
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Zernike mode compensated 3 4 6 8 9
Theoretica (D/rq)%/? 0.134 0.111 0.065 0.053 0.046
Achieved (D /1) 0.15 013 0.088 0.093 0.106

Table 3.1: Theresidual phase variance o in units of (I/r,)5/® after using a standard |east-
squares method described by Primot[64] to solve EQ.(3.17). The theoretical results for perfect
compensation were given by Noll [62]

number of sensors and actuators etc. Rigaut has derived an expression for Zernike modes [72]
that isgiven as
P(J) ~0.34 In(J) + 0.10. (3.19)

The error budget of a Shack-Hartmann sensor correcting for J modes can now be written as
ol = A;+ P(J) (072, + Uzh) , (3.20)

where A ; isthewave-front fitting error after removingthefirst ./ Zernikemodesgivenin Eq.(2.44).
The implications of the dynamic behaviour of the turbulence will be discussed in Sect. 3.4.

3.2.2 Curvature sensor

Theideaof acurvature sensor wasfirst discussed by Roddier [74]. It relieson measuring thein-
tensity distributionin two different planes on either side of thefocus using the normalised differ-
ence between the distributions. This differenceis a measure for the curvature of the wave-front
in the telescope pupil and for the wave-front tilt at the aperture edge. The principle is sketched
in Fig. 3.6. The two intensity distributions are recorded in the two planes P, and P,, a distance
6 from the telescope focal plane. The figure displaysthe effect of alocal curvature of the wave-
front: the curved wave-front leads to alocal excess of illuminationin plane P, and to alack of
illumination at the corresponding position in P as the light is spread out. The two planes of
observation have to be far enough apart so that geometrical opticsisa good approximation, i.e.

(f=0)A/ro < red/f.

Telescope
aperture

Figure 3.6: Principle of the curvature sensor. The gray lines show the rays from a curved part
of thewave-front that form afocus beforethefocal plane, leading to alocal increasein intensity
in plane P, and adecreasein P,.
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However, for extended sources and different degrees of correction the situation becomes
more complicated. The local resolution of the wave-front measurement, given by the size of the
subaperturesin the Shack-Hartmann sensor, is determined by the size of the blur that is caused
e.g. by the small piece of curved wave-frontin Fig. 3.6. If the separation ¢ istoo small thisblur
istoo small to be measured. Also, if the detector pixelsare too large thisblur cannot be resolved
and the mode corresponding to aberrations of thissize cannot be measured. Thus, the separation
4 and the pixel size have to be adjusted according to the required degree of correction. An ex-
tended source has the same effect as a larger seeing disk, and the separation has to be adjusted
accordingly. The conclusion is: for the measurement of high orders, 6 must be larger than for
low orders, and for extended sources, 6 must be larger than for point sources [80].

The normalised difference between the two intensity distributionsis [74]:

Li(z,y) — 1 (z,y) |0

C(l’,y) = ]+(:1;,y) + [_(l',y) & a—qu(p,@)q} -V qb(p,@) ’ (321)

where V2 = %8% ( ,oa%) + p% % isthe Laplacian operator representing the curvature of thewave-
front. The wave-front radial tilt % has to be weighted by an impulse distribution ¥ around the
pupil edge. The advantage of the curvature measurement over the slope measurement in a Shack-
Hartmann sensor isthe very low correlation of the local curvature over the wave-front. Measur-
ing statistically independent signals gives a better estimate of the wave-front [76]. Eq.(3.21) is
the irradiance transport equation for paraxial beam propagation providing a general description
of incoherent wave-front sensing methods [ 75].

That meansin an f/35 beam on a3.5-m telescopefor A = 2.2 ym and ro = 0.6 m the planes
should be § = £90 mm apart.

p=0 08112

Figure 3.7: Sampling geometry for alow order curvature sensor. Theilluminationisintegrated
over each segment. The width of the impulse distribution ¥ is displayed by the dashed lines.

We have modelled a 7-element curvature sensor displayed in Fig. 3.7 [29]. Using the geo-
metrical optics approximation (f — §)A/rq < r¢d/f onefindsthat § is+90 mm for af/35 beam
ona3.5-m telescopefor A = 2.2 ym andry = 0.6 m. Aswemodel alow order system we used
6 = £20 mm. The signal in Eq.(3.21) hasto be integrated over the area of each segment where
the width of the impulse distribution for the 6 edge segments has to be carefully adjusted. We
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have assumed that ¥ hasawidth of 20% of the pupil diameter and that it has arectangul ar shape.
Thus, we obtain the signal ¢; at detector | in Fig. 3.7 by integrating the curvaturefor p = 0.5 to
1 and ¢ = 0 to w/3 and by integrating % forp=08tol.2andfd = 0tor/3. Theresultis

cr o 0.4v/3 ag + 0.4 as — 2.5 ay + 1.489 as + 0.8598 ag — 5.736 ar — 9.935 as + 2.353 ao... .

Oneobtainsaset of seven equationsrelating the signalsof the sensorsto the Zernike coefficients.
This set of equations can be written in matrix form similar to Eq.(3.17) as

é= 0.4, (3.22)

with ¢ the vector containing the measured curvature and gradients for the edge segments, a the
vector containing the coefficients of the Zernike polynomia and ©. the interaction matrix. A
simple |east-sguares routine was used to solve this equation.

A comparative study between the 2x2 Shack-Hartmann sensor discussed in the previous
section and the 7-element sensor discussed here has shown that the performanceis very simi-
lar down to very low light levels [29, 80].

The measurement errorsof the curvature sensor wereinvestigated by Roddier [ 76]. Hefound
that the error propagation coefficient P(.J) (Eq. 3.19) increases with ./ and not with In(.J). This
is the reason why the curvature sensor is more suited for low order correction.

3.2.3 Shearinginterferometer

Apart from the two wave-front sensing methods discussed so far, both of them measuring inten-
stiesinor closeto thetelescope focus, thereisathird method, the shearing interferometer. Here,
the wave-front interferes with itself in the telescope pupil. The interference pattern, the fringes,
are then used to determine the local slope of the wave-front. Fig. 3.8 displays the principle.

x+s)
o) O

Figure 3.8: Principle of the shear interferometer. The form of the fringes in the interferogram
are determined by the shape of the wave-front.

The signal that ismeasured in ashearing interferometer can be expressed quite smply asthe
sum of the complex amplitudes

IE) = 5 lexplio(@) + explio(i + )P
= 14 cos(op(¥) — (¥ + 3)) . (3.23)



42 CHAPTER 3. ELEMENTS OF ADAPTIVE OPTICS SYSTEMS

With ¢ the phase of thewave-frontinrad, the signal iswavelength dependent. 1t becomesinde-
pendent of the wavelength if the shift is proportional to the wavelength. Grating interferometers
have been used to achieve achromatic properties (see [96] for details). For a small shift || the
phase difference ¢(¥) — ¢(2 + §) is approximately equal to the slope of the wave-front in the
direction of the shear vector 5. With a Taylor approximation for small shear s, aong the x-axis
one obtains

8¢( ?)

¢(7) — O(7 + (52,0)) = +e(ss) - (3.24)

In order to reconstruct the wave-front two interferograms with orthogonal shear are required.
Extended sources reduce the fringe contrast since the quantity that is being measured is the co-
herencefunctionat |35|. Thus, similar to the curvature sensor the wave-front sensor geometry has
to be adjusted according to the object size.

The subapertures that determine the spatial resolution of the slope measurements are repre-
sented by the size of the detector pixels. Since the shear interferometer belongs to the class of
slope sensors the noise properties are very similar to the Shack-Hartmann sensor.

3.3 Wave-front reconstruction

In the last section, we have assumed that the modes of apolynomial, in our examplethe Zernike
modes, are reconstructed from the information obtained by the wave-front sensor. Apart from
this modal reconstruction of the wave-front there exists a so the zonal approach where the error
in e.g. each subimage of a Shack-Hartmann sensor is minimised by tilting the wave-front in the
subaperture. In a curvature sensor system this approach is even more intuitive in combination
with a bimorph mirror (see Sect. 3.5). Here, the curvature of the mirror surface is changed by
applying avoltage to the mirror actuator and, in principle, the measured curvature signal froma
single detector element can be hard-wired to the corresponding actuator of the bimorph mirror
[76].

In both cases the local piston of the wave-front e ementsin each subaperture hasto betreated
separately in order to smoothly model the wave-front. This requires some very difficult recon-
struction techniques[80]. Together withthe high accuracy that isrequiredinthe opto-mechanical
alignment to ensure a precise correspondence between the wave-front sensor e ements and the
deformablemirror actuators, the zona approach becomeslessattractivethanthemodal approach.

The matrix equation for the modal reconstruction M = 0..a (Eg. 3.17) connecting the co-
efficients of the Zernike modes @ with the wave-front slopes M can be solved by aleast-squares
approach:

= (04,0,,) 0L M. (3.25)

The product of matrices (0% 04,) " @51 is called reconstructor matrix. This method can be ex-
tended to include the noise characteristics by adding a noise vector to the vector of slopes
M,=M+N. (3.26)

To solve this equation the covariance matrix of the noise < NNT > hasto becalculated. Since
the two noise sources, the photon noise and the read noise, are statistically independent for each
subaperture the covariance matrix is diagonal. If the noise variance of each subapertureis the
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same and equal to o2 . _ the result of the |least-sgquare minimisation can be written as (see e.g.
[58]) )
i= (0104 +o2. <di’ >"H'elM, (3.27)

noise

where < @al > isthe covariance matrix of the Zernike coefficients given in Table 2.3. This
technique to reconstruct the wave-front is also called maximum likelihood technique as by de-
termining @ one maximimises the probability of producing the measurements A/. This method
has recently been improved by implementing knowledge about the correlation of the slopes be-
tween the subapertures[82].

The coefficientsv of the polynomialsof the deformable mirror (the mirror modes) arerelated
to the Zernike coefficients @ through an additional interaction matrix so that a new interaction
matrix can be cal culated linking the lope measurements M di rectly with . Theformalismisthe
same as above, with the exception that it might be extremely difficult to calculate the inverse of
the covariance matrix < v > for anon-orthonormal set of mirror modes. If the mirror modes
do not exactly match the surface of the mirror the maximum likelihood technique no longer rep-
resents the best estimate of the wave-front [ 79]. The minimum-variance method can be used to
circumvent this problem [93]. Here, in order to maximise theimage intensity the variance of the
residual wave-front aberrations are minimised incorporating the mirror influence function. The
practical drawback is that accurate knowledge of the wave-front and noise statistics, and of the
mirror influence function are required.

3.4 Closed loop operation

So far, the properties of wave-front sensors have been discussed for the static case of asingle
measurement. In order to investigate the performance of adaptive optics systems the dynamic
behaviour of turbulence hasto be considered. In Sect. 2.5 and 2.6, the temporal characteristics
of image motion and of the Zernike modes have been discussed. These properties are used in
the following investigation of the dynamic requirements of adaptive optics systems.

3.4.1 Tip-tilt correction

First, we have to define a requirement for the image stabilisation that provides an acceptable
image quality. The next step isthen to determinethe tracking frequency that stabilisestheimage
sufficiently to achieve the image quality, using the temporal power spectra that were calculated
in Sect. 2.5.

In Sect. 2.5 the two axis variance of the image centroid motion was given as

(AB)? = 0.34(X /1o)X (D /ro) " *larcsec?], (3.28)

withtheseeing A /rq inarcsec. Therelated variance o2 of the wave-front phase ¢ dueto thetwo
axisimage centroid motion is the sum of the variance due to the wave-front slope alone and the
contribution of the wave-front comagiven in Table 2.2, yielding

o2 = (0.896 + 0.025)(D/r¢)%? = 0.92(D /ro)**[rad?]. (3.29)
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The two axis variance of theimage motion (A)* and the residual phase variance o, arerelated
linearly by

(A0)”
(A/D)?

with Ag and A/ D both in arcsec or both in rad.

Uft = 2.7

[rad?®], (3.30)
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Figure3.9: Anuncorrected power spectrum sampled at 100 Hz, and power spectrasampled and
corrected at 30, 60 and 100 Hz. At frequenciesbelow 10 Hz, one can clearly see theinfluence of
thedifferent sampling frequencies. Thelevel of the power spectrumislower for higher sampling
frequencies implying better correction. At higher frequencies thereis no difference.

As a performance criterion for tip-tilt systems, one can use a measure that is related to the
variance of the wave-front phase after perfect centroid tracking. If it isacceptable that the phase
variance due to the residual image motion adds 10% to the phase variance due to higher order
termsgivenin Eq.(3.4), thetip-tilt system has to reduce the variance of theimage motion (A#)?
and the phase variance o7, by afactor of 64, yielding

Ufmres = 0.014(D/r0)5/3[rad2], (3.31)
(Abre)®> = 0.0053(\/D)*(D/ro)**[arcsec?].

Then, the tolerable single axis rmsimage motion in terms of the seeing A/r in arcsec isgiven
as
Abyes single = 0.052()\/r0)(D/ro)_1/6[arcsec]. (3.32)

If the seeing is 0.76” at 2.2 um and r, is 60cm on a 3.5-m telescope the single axis rms im-
age motion has to be reduced from 0.23” to 0.028" in order to add less than10% to the residual
variance of the wave-front phase.
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The variance of the wave-front phase ¢, due to the higher order Zernike terms plus the re-
maining coma (Eq. 3.4), and the residual image motion (Eq. 3.31), can be written as

2 2 2
g = Ocentroid + O-tt,res

= (0.158 + 0.014)(D/ro)*"
= 0.172(D/ro)**[rad’]. (3.33)

This expression was derived in [22] with aminor numerical inaccuracy.

How fast do we haveto track the imagein order to reduce the image motion by thisamount?
Control theory provides the tools to describe closed loop systems. Similar to the description
of the imaging process with atransfer function for the spatial frequency spectrum of the image
intensity, atip-tilt system can be modelled with atemporal transfer function describing the effect
of the tracking process on the temporal frequency spectrum of the image jitter.

One axis power spectra of image centroid motion sampled at 60Hz
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Figure3.10: Comparison between the measured power spectrum of theimage motion corrected
at 60 Hz, and the theoretical power spectrum that is calculated by multiplying the spectrum of
the uncorrected image motion with the closed loop transfer function. Thelatter can be regarded
as the ‘best case’ power spectrum of corrected image motion. The spectra agree fairly well at
low frequencies between 0.1 and 1 Hz. At higher frequencies, the corrected power spectrum s
slightly amplified compared to the ‘best case’ spectrum.

The power spectra of tip-tilt corrected image motion can be modelled using the closed loop
transfer function [31] ,
T(f) _ (f/deB)

L4 (f/ faam)?
with f34p the 3dB servo bandwidth which is about 10 times smaller than the loop frequency, de-
pending on the parameters of the closed loop algorithm. Multiplying the tempora power spec-
trum @, ,( f) (Eq. 2.37) of the image motion with the transfer function 7'( f) givesthe corrected

(3.34)
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power spectrum. The propertiesof the corrected spectrum in thelow and high frequency regime
can be described using theapproximationfor & ,( /) giveninEq.(2.38). WithT'(f) = (f/ fsas)?
for f < fsup@and T'(f) = 1 for f > fsap the corrected low frequency spectrum P, becomes
proportional to /3, and the corrected high frequency spectrum for f >> fsqp remains unaf-
fected.

Theintegral over the product of the corrected power spectrum isthe variance of the corrected

image motion:
(Ao = [ @oo )T (F)df - (3.35)

The bandwidth f345 of the servo system hasto be chosen such that the corrected variance equal's
the value defined in Eq.(3.31). Using the approximation of a single dominant layer with awind
speed v (see Sect. 2.5) one finds that the required tracking bandwidth to reduce the rms image
motion to 1/8 of the uncorrected valueis

Fr=1.628/D, (3.36)

where D isthetelescope diameter. If theeffectivewind speedis15m /sec (54 km /h) ona3.5-m
telescope the required tracking bandwidth is approximately 7 Hz. Asthe bandwidth of aclosed
loop system is about 10 times smaller than the sampling frequency, the image motion has to be
sampled at about 70 Hz. The Strehl ratio that can be achieved at 2.2 ym in 0.76” seeing isthen
5.3%, which istwice the uncorrected value of 2.6%.

T()
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Figure 3.11: Closed loop transfer functionsfor different parameters. The solid line represents
the transfer function given in Eq. (3.34). The dashed lines incorporate the effect of the finite
bandwidth of the tip-tilt mirror, where the curve with the highest peak at f/ f3qp representsthe
system with the highest gain. Lower gain resultsin alower peak, but the propertiesat low fre-
guencies are deteriorated. (Compare to experimental resultsin Fig. 3.12.)

It isinteresting to write the variance of the tip-tilt corrected wave-front as a function of the
actual bandwidth f545 of the tip-tilt system. If f345 iSsmuch larger than the tracking bandwidth,
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one finds that the residual varianceis proportional to f;5 [88]. In the frequency region around

the tracking bandwidth the variance is approximately proportional to f:,jB/S [22] and one can
write

o ves = (fr/ f2a8)*/?0.014(D [r0)**[rad’]. (3.37)

Power spectra of uncorrected image motion and of corrections at sampling frequencies of 30,
60 and 100 Hz are displayed in Fig. 3.9. This datawas taken with CHARM, atip-tilt correction
system for the Calar Alto 3.5-m telescope that is described in Sect. 4.1 [26]. The cross over
point between the uncorrected and the corrected spectrum is approximately the servo bandwidth
of the closed loop system. Fig. 3.9 shows that the bandwidth is roughly 4, 6 and 10 Hz for 30,
60 and 100 Hz loop frequency respectively. It should be noted that the residual image motion
calculated as the integral over the power spectrum is mainly caused by incomplete removal of
image motion at frequencies below 5Hz.

Fig. 3.10 displaysameasured tip-tilt corrected power spectrum and atheoretical power spec-
trum that is obtained by multiplying an uncorrected power spectrum with the transfer function
T(f). The comparison showsthat 7'( /) models the system reasonably well except for the am-
plification that occurs at frequencies larger than the bandwidth. This behaviour is caused by the
tip-tilt mirror that needs a finite amount of time to move to anew position. Taking thislag into
account the transfer function takes on a more complex form that is displayed in Fig. 3.11 (see
[89], Chapter 7). Thisisonly one examplefor aclosed loop transfer function. Depending on the

One axis power spectra of image centroid motion sampled at 50Hz
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Figure 3.12: Comparison between an uncorrected power spectrum and power spectra corrected
at 50Hz with different gains. The vaues of the corrected power spectrum at low frequencies
increase as the gain is decreased, since lowering the gain has a similar effect to lowering the
sampling frequency asshownin Fig. 3.9. However, low gain resultsin lessamplification of high
frequency jitter. Thus, lower gain can be an advantage if high frequency telescope resonances
have alarger influence on the image quality than atmospheric turbulence.
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parameters of the servo system one can create a large variety of transfer functions to optimise
the behaviour at different frequencies[12].

The amplification at frequencies f > fsqp iSproportional to the applied gain that is defined
as the percentage of the measured centroid offset that is applied to the piezosin order to move
the centroid to the image center. However, reducing the gain in order to decrease this effect
reducesthe performanceat lower frequencies. Asthe atmospheric tip-tilt power spectrum shows
a steep decay at high frequencies one has to carefully adjust the gain factor in order to optimise
the performance.

Usually, we run our tip-tilt system at again of 80%. In Fig. 3.12 the power spectraat aloop
frequency of 50 Hz are compared for gains of 80, 50 and 20%, showing that the bandwidth drops
with decreasing gain. The servo bandwidthis at about 5 Hz for 80% gain, at 3 Hz for 50% gain
and at 2 Hz for 20% gain. The amplification of the power spectrum at high frequenciesis|owest
for thelowest gain. Thus, if the telescope mechanical resonance frequencies have alarger effect
on the image quality than the atmospheric turbulences, then the gain can be reduced to dampen
them. CHARM allowsthe adjustment of the gainin real time, and the changes can be controlled
viathe real time display of the image centroids.

Figure 3.13: A mosaic of tip-tilt corrected images of the Trapezium Cluster at 2.1 um. The
field of view is54.5x51.8 arcsec at 0.178" per pixel, and the resolutionis 0.35” FWHM which
is a factor of two improvement over the uncorrected images (see [56]). For comparison: the
diffraction limit of the Hubble Space telescope at the same wavelengthis 0.21".
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In order to give an idea of theimage quality that can be achieved with atip-tilt system a cor-
rected image of the Trapezium isdisplayed in Fig. 3.13. Theimageswere obtained in September
1993 on the Calar Alto 3.5-m telescope in the near infrared (2.1 4m).

A mosaic of severa corrected images is displayed in Fig. 3.13. Here, two different guide
stars (91 Ori C and #'Ori D) were used for peak tracking in different series of images. Of the
40 tip-tilt corrected images, the best 24 were chosen to ensure the highest image quality. The
mosaic coversan areaof 54.5x51.8 arcsec, and the effective integration time per pixel is72sec.
The uncorrected seeing wastypically 0.7 FWHM. The peak intensity of the corrected imagesis
doubled and the FWHM is 0.35", which isonly afactor of 2.7 above the diffraction limit of the
3.5-m telescope. Inthe corrected image, the stars are seen to have narrow cores superimposed on
a broader halo. These features are more prominent in the image profiles. There is no evidence
of degraded resolution towards the edges of the image indicating that the isoplanatic patch is
larger than the field of view. The astronomical results from these data have been discussed in
McCaughrean and Stauffer [56].

3.4.2 Higher order correction

Operating an adaptive optics system by correcting many modes of the Zernike polynomials can
be regarded as an extension of the tip-tilt system described in the last section since all modes
are controlled independently. Two parameters have to be adjusted according to the number of
modes that are corrected: the gain and the bandwidth. The gain should be different for each
mode depending on the accuracy of the measurement that can be determined experimentally.

The required bandwidth for full correction wasgiven by Greenwood [31]. Heassumed asys-
tem that in the static case correctsthe wave-front perfectly, and that all aberrationsare caused by
the finite bandwidth of the control system. He then used the power spectrum . ( f) of the phase
fluctuations of thewave-front (Eq. 2.30) and applied the transfer function 7'( f) (Eq. 3.34) to cal-
culate what was subsequently called the Greenwood frequency that by using the single dominant
layer approximation is ssimplified yielding

fo = 0.43—. (3.39)

o

Theresidua variance of the wave-front can then be calculated as
0% = (fa/ faan)[rad?] . (3.39)

If the servo bandwidth f54g of the closed |oop systemischosen equal to f; thevarianceis1rad?
which is equivalent to a Strehl ratio of about 35%.

This variance has to be compared to the residual variance after correcting e.g. 50 Zernike
modes perfectly. Using Eq.(2.45), one finds that it is A5 = 0.25rad” in 0.9” seeing, corre-
sponding to a Strehl ratio of 77%. Although Greenwood'sassumption of a perfect system cannot
be compared easily to the case of removing only a limited number of Zernike modes — leaving
aresidual phase variance even for infinite bandwidth —it is clear that the Greenwood frequency
with the residual variance of 1rad® istoo small for a good correction.

Fig. 3.14 showstheresult of asimulation using the method described in Sect. 2.7. Correcting
for 50 Zernike modes with infinite bandwidth (for details see the figure caption) gives a Strehl
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ratio of about 80% that agreeswell with thetheoretical result of 77%. However, applying Green-
wood's criterion to estimate the additional residual phase variance for afinite bandwidth leads
to a discrepancy between the ssimulated values and the theoretical values. For instance, for a
loop frequency of 100 Hz and for 50 corrected modes the Strehl ratio in the smulation is 56%
(Fig. 3.14), and the Strehl ratio of the Greenwood model is 66%. The ssimulation gives an idea
of how the image quality evolves with bandwidth and number of modes. But in order to come
to a better analytic estimate one should apply the closed loop transfer function of the system in
use to the temporal power spectrum of the Zernike modes and cal cul ate the contributions of the
single modes at a given bandwidth. This estimate would then be much more redlistic.

In the case of alaser guide star adaptive optics system the image motion has to be measured
with a natural guide star (see Sect. 3.6). Then our criterion to reduce the image motion to one
1/8 of the uncorrected value isno longer sufficient. One has to redefine the requirement in terms
of the Airy disk with adiameter A/ D. If itisthe goal to reduce the single axisrmsimage motion
A# 10 0.25)/ D the tracking bandwidth can be calculated in the same way as in the last section
using Egs. (3.30), (3.31) and (3.37) to obtain

ot = 0.25 6 /ro. (3.40)

Tyler investigated pure Zernike tilt and the centroid tilt separately, and he presented a smilar
result [88].
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Figure 3.14: The Strehl ratio as a function of wavelength for different numbers of corrected
modes and different bandwidths for an effective wind speed of 4m /sec and 0.9” seeing at
2.2 um. Four groupsof curves (each group ranging from black to light grey) and the uncorrected
seeing, reaching barely 0.06 at 3 xm, are displayed for corrections of 2, 3, 10 and 50 Zernike
modes each correction at four loop frequencies, co Hz (black curves), 400, 200 and 100 Hz (light
grey curves). Thelargest number of modes, 50, yields the highest Strehl ratios at al frequen-
cies, with awide spread for different frequencies. Correcting only two (tip and tilt) or three (tip,
tilt and focus) modes shows approximately the same result for all frequencies as 100 Hz iswell
above the required tracking frequency of 20 Hzwhich is about 10 times the tracking bandwidth
fr. Thecurves are the result of a simulation using the method described in Sect. 2.7.



34. CLOSED LOOP OPERATION 51

The subsequent variance of the wave-front phase due to the residual image jitter aloneis

UE.O.T = (fh.o.T/f3dB)5/30.33 [radz]. (3.41)

The very simple assumptions that lead to these results make it impossible to draw far reaching
conclusions. However, it is fair to say that the tip-tilt system has to be run at almost the same
frequency as the higher order system in order to add an acceptable amount to the variance of
the wave-front. Conan et al. came to avery similar conclusion discussing the temporal power
gpectra of the Zernike modes that are displayed in Fig. 2.6.

If for example the effective wind speed ¢ is 15m /sec and if rq iS 60 cm which is equivalent
t0 0.76” seeing at 2.2 «m the bandwidth for full correction according to the Greenwood criteria
is fe = 11 Hz, and the required tracking bandwidth is f,, ..t = 6 Hz. The respective track-
ing frequencies are about 110 Hz and 60 Hz. It should be emphasised that this can only give an
idea about the order of magnitude since the adaptive optics system is not perfect as Greenwood
assumed, and, as noted above, since a residual variance of 1rad® istoo large. In practice one
can start at about 2—4 times the Greenwood frequency and determine the optimum bandwidth
by examining the image quality achieved.

3.4.3 Error budget —limiting magnitude

We can now write down the error budget of an adaptive optics system with a Shack-Hartmann
Sensor:
0-2 = Ui?it + Uzoise + 0-12)W7 (342)

with o5, thefitting error that represents the wave-front variance due to the uncorrected Zernike
modes, o,,.;. the measurement noise that is due to photon and read-noise (see Sect. 3.1.3), and
ouw the error due to finite bandwidth. The fitting error for correcting J Zernike modesis given
by Noll [62] as

oh = Ay~ 0.2944.J V372 (D/ro)? [rad?] for large J , (343)

andislisted in Table 2.2 for J<12. D isthe diameter of the telescope aperture.
The noise error o, iISgivenin Egs. 3.18 and 3.19 and, including the complete expressions
for the photon noise and the read noise, reads as

AWFS )

Uzoise = P(J) )\IR (Ugh ‘I‘ 0'72,) [rad2] 7VVlth
P(J) = 0.34In(J) + 0.10,

2 r? 1 2

Tpn = 7N—ph(d/r0) ,and

2 2 4
2 T 272 04 d
= /NG v | 3.44

= 5 () () o

with P(.J) the factor for the error propagation in a Shack-Hartmann sensor correcting for ./
Zernike modes [72]. d isthe diameter of the subaperture, N? isthe total number of pixels per
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Airy disk, and f isthe quotient between the area on the detector used for the centroid calcula-
tion and the area of the seeing disk. (Aslong as the subaperture diameter is larger than r¢. This
is always the case as the wave-front sensor operatesin the visible with r, typically 10cm.) As
noted in Sect. 3.1.3, the case of background photon noise is treated very smilarly by replacing
the detector read noise o, by the background noise o}, [80].

The error due to the finite bandwidth was discussed in the last section and given to be

oty = 08 = (fa/ fsa)**rad?, (3.45)

where the Greenwood frequency is fo = 0.43 ©/ro. A numerical example will illuminate the
situation.

We assume a situation where the seeing is 0.76” in the near infrared at 2.2 um on a 3.5-m
telescope. The Fried parameter isthenr, = 0.6 m. A Shack-Hartmann sensor, operating in the
visiblewith Aywrs = 0.5 pm and 5x 5 subapertures (d = 0.7 m) isused to correct for 15 Zernike
modes. In the table the seeing parameters are summarised:

Wavelength 0.5um 2.2um
Seeing 17 0.76"
d/ro 7 11

The discussion starts with the fitting error, i.e. the best variance that we can theoretically
achieve if for correcting 15 Zernike modes. Itis Ay = 0.028(D/r,)%* = 0.56rad”® corre-
sponding to a Strehl ratio of 57%. If we want to add less than 0.2 rad? to the variance, i.e. if the
Strehl is to stay above 45%, one can for afirst iteration allow 0.1rad? for the noise error and
equally 0.1rad* for the bandwidth error. The Greenwood formula can be used to estimate the
required bandwidth and then the star magnitude can be determined that provides enough photons
to have less than 0.1rad” for the noise error.

With o = 15 m/sec and ro = 0.6 m the Greenwood frequency is 11 Hz. Since we want to
add lessthan 0.1 rad” to the variance our bandwidth has to be 44 Hz, and, thus, the frame rate of
the Shack-Hartmann sensor has to be 10 times the bandwidth, i.e. about 450 Hz. The exposure
timeis then about 2 msec.

The read noise for a pure tip-tilt system was investigated in Sect. 3.1.3. To discuss the read
noise for centroid measurements in a Shack-Hartmann sensor with subaperture diameter ¢ and
with P(.J) = 1 for correcting J = 15 Zernike modes we obtain

2
2 g4 12 2
Or e (40 Nph) + N [rad”] . (3.46)
If theread-noiseiso; = 5 electrons, which istypical for CCD cameras we need about 600 pho-
tons per subaperture in 2 msec to reduce the additional variance to 0.1rad?. This corresponds
to astar with my = 10, which is arealistic number for the set of parameters used here. If the
requirements for the bandwidth are relaxed the variance o2, increases with f:,jB/S and o2 . de-
creaseswith N, aslong asthe second term, the photon noise remainssmall. Thus, reducing the
bandwidth by afactor of two increases the noise by afactor of 3 but it reducesthe read noise by

afactor of 4 resulting in anet gain in performance. However, as the concept of the Greenwood
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frequency is fairly crude one should not overestimate the significance of the calculated values
for small changes.

One parameter that has not been treated so far is the isoplanatic angle that determines the
maximum distance between the object and the guide star. This depends heavily on the degree of
correction and the layer structure of the atmosphere. Rigaut has investigated this quantity [70]
and found that, depending on the tolerated additional variance values between 10" and 30" can
be expected in the near infrared. If a guide star of 10th magnitude has to be no more than 30”
from the astronomical object the number of objectsthat fulfill this requirement isvery small.

However, if an artificial guide star can be placed anywhere in the sky the situation changes
dramatically. Only thetip-tilt correction relieson anatural guide star, and here the requirements
are much relaxed compared to the full correction. A formulafor the static error was given in
Eq. 3.15, and the noise error is

2
o 312
Onoise = | 210—— | + ——. 3.47

( Nph) Nph ( )

If the tolerated additional varianceis 0.1 rad? and the read noise o, = 5 electrons, 3000 photons
per exposure are required.

The bandwidth for tip-tilt correction can be calculated using Eq.(3.41), yielding fuo.1 =
0.5 0/ro = 12.5 Hz, resulting in atracking frequency of 125 Hz and an exposuretime of 8 msec.
Here, the tip-tilt system has to run faster than for pure tip-tilt tracking (fr = 1.62 ¢/D ~ 7Hz
see Sect. 3.4.1) because the error has to be reduced to the absol ute value of 0.1 rad? independent
of seeing conditions. 3000 photons per 8 msec exposuretime correspond to amagnitude of about
my = 13. Thislimiting magnitude and the larger isoplanatic angle increase the sky coverage
drastically.

3.5 Deformablemirrors

The earliest developments of deformable mirrorsaimed at TV projection systems in the early
1950’s. In the so-called Eidophor system, a mirror in avacuum chamber is covered with athin
layer of oil upon which amodulated beam from an electron gun isdeposited in arastered pattern.
Local forces of surface repulsion are induced forming transient changes in the dope of the ail
film. The wave-frontisthenlocally tilted by refractionintraversing thefilm. The optical system
of the TV projector blocksthetilted beam, and the point on the mirror remainsdark in projection.
Bright spots appear in the projected image of the mirror wherethe oil filmisflat. The TV image
ismodulated onto the mirror by modulating the beam from the el ectron gun similar to the process
of forming an image with a cathode ray tube.

For the application in adaptive optics systems the ability of the Eidophor mirror to shape the
wave-front with local tiltswas used. H. W. Babcock suggested to use thismirror in his proposal
for an adaptiveopticssystem in 1953 [ 3]. However, thetechnological problemsat that timewere
too large to actualy build the system.

Today, there are mainly three classes of deformable mirrorsdisplayedin Fig. 3.15: The seg-
mented mirror with single tip-tilt elements and two mirror types with a continous surface, the
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Figure3.15: Threeclassesof deformablemirrors. (a), asegmented mirror with tip-tilt actuators
behind each segment, (b) and (c) two types of continous mirrors with piston actuation in the
piezo-electric mirror(b), and bending actuation in the bimorph mirror (c).

bimorph mirror where the curvature of the mirror surface is affected by applying a force par-
allel to the surface, and the piezo-electric mirror* where a stack of actuators behind the mirror
surface pushes and pulls the mirror by applying a force perpendicular to the surface (see E. N.
Ribak for areview [68]).

Segmented mirrors have a number of advantages over continous mirrors: the segments can
be moved independent of each other, they can be replaced easily, and the single segments can
be combined to form rather large mirrors. In the section on wave-front sensors (Sect. 3.2) it was
discussed that by associating each sub-aperture of a Shack-Hartmann sensor to a segment of the
mirror the high order adaptive optics systems consist basically of tip-tilt systems that are run
in parallel. Although this is appealing because of its conceptual simplicity, in addition to the
single segment tip-tilt correction, one has to process the data to obtain the piston signalsthat are
necessary to reconstruct a continous wave-front. Also the alignment between the subapertures
of the Shack-Hartmann sensor and the single segmentshasto bevery precise. Thedisadvantages
of segmented mirrorsinclude problemswith diffraction effectsfrom theindividual segmentsand
the intersegment alignment. In infrared applications the gaps between the segments can be the
source of infrared radiation that deteriorates the image. Only few adaptive optics systems with
segmented mirrors have been built for solar [1] and stellar [13] astronomy.

Bimorph mirrorsare constructed of athin piezoel ectric material bonded to athinmirror mem-
brane (seeFig. 3.15c). When avoltageisappliedtothe PZT material it expandsin areasimilar to
abimetallic strip. The curvature of the surface is proportional to the applied voltage. The appli-
cation of a curvatureto the wave-front make the bimorph mirrorsthe natural counterparts of the
curvaturesensor. Asnoted in Sect. 3.2, it wasdiscussed to feed the signal from the curvature sen-
sor directly to the bimorph mirror [76]. Thisdesignissimilar inits conceptua smplicity to the
idea of using amirror segment for each subaperture of a Shack-Hartmann sensor. However, the
requirements for the optical aignment are similar. The bimorph mirrorsthat are commercially
available have only alow number of actuators, e.g. the bimorph mirror in the CFHT adaptive
optics system has 19 actuators (see Sect. 3.2). The excellent seeing conditions on Mauna Kea
make the 19 actuator mirror agood choice. The seeing at most other observing sitesisworse so
that a higher number of actuatorsis required to achieve a good performance.

4Since the bimorph mirror also works with piezo-€electric material, it is not completely straightforward to use
this name for only one class of mirrors. However, most people call it by this short name since thistype of mirror is
most commonly used, and since the other typeis aways referred to as bimorph mirror.
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Piezo-electric mirrors, i.e. continuous mirrors with an array of piezo-electric actuators ex-
panding perpendicular to the mirror surface (Fig. 3.15b) are in widespread use now. They are
available with up to 350 actuators, and the technology is well tested and very reliable. They
were developed originally to project high power laser beams on military targetswhen segmented
mirrors produce too much scattered light [89]. The typical voltage that is required to move the
actuatorsisbelow 100 V, the bandwidth isin thekHz range, and thetypical strokeisinthe5 um
range. Whilst thisissufficient for high order correction thetip and tilt induced by the turbulence
requires alarger tilting angle so that an extratip-tilt mirror is needed. Some manufacturers are
now using electrostrictive material like alead-magnesium-niobate (PMN) crystal that issimilar
to the piezo-€el ectric lead-zirconate-titanate (PZT) ceramics, but that displays a smaller hystere-
sis and a better motion control.

Both types of continous surface mirrorsavoid the diffraction effects associated with the sin-
gle segments and the intersegment alignment problem. Here, the problems arise from the com-
plexity of the algorithm to control the mirror surface as the actuators are not allowed to move
independent of each other. If one actuator is set to the maximum voltage its next neighbour must
not be set to the minimum voltage. Otherwise the mirror surface would be damaged. Also,
changing the voltage of a particular actuator usually affects the shape of the mirror surface at
the location of its neighbours.

There are severa new developments ranging from very large deformable mirrors that can
replace the telescope secondary [81], to extremely small units that are based on microel ectroni-
cal manufacturing methods [91]. A completely different class of wave-front actuation is repre-
sented by theliquid crystal half-wave phase shifter especially suitable for narrow band applica-
tions[52]. The LBT® will be equipped with an adaptive secondary with 1000 actuators that has
adiameter of 870 mm and athickness of 2mm. Using actuators with alarger strokethisdesign
allowsthecorrection of all aberrations, including tip-tilt. Itisdiscussed to use an actuator design
based on loudspeaker technology where the actuator motion is provided by voice coils. The ad-
vantage of the design with an adaptive secondary isthe conceptual elegance and thelow number
of reflectionsthat are an advantage both for the optical throughput and the infrared background
[40].

3.6 Laser guidestars

An artificial guide star that can be placed anywhere in the sky to a large extent solves the very
restrictive limiting magnitude problem. The sky coverage can then be increased to nearly 100%
depending on seeing conditions. This technique wasfirst discussed by the US Air Forcein 1982
inconnection with propagating laser beamsto satellites. For thisapplication, natural background
stars are not suitable as guide stars since satellites are moving too fast. However, al the re-
lated research was classified until 1991 [34]. Independent of the military research, R. Foy and
A. Labeyrie published the concept to create alaser guide star in the upper atmosphere in 1985
[14]. Since then, anumber of tests have been carried out [87, 42, 51, 18, 55, 84].

5The L arge Binocular T elescope consists of two 8.4-m telescopes separated by 14.4m (center to center). The
Telescope is currently under construction on Mount Graham in Arizona, USA
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The basic concept of creating an artificial guide star is rather smple: A laser beam is pro-
jected into the sky, into the center of the field of view of the observing telescope. Then, using
either thelight that is reflected in the stratosphere by Rayleigh scattering, or the resonance fluo-
rescencein the D, line of sodium (Na) atomsin the mesosphere at an altitude of about 100 km,
one can determine the atmospheric turbulence. However, athough the Rayleigh scattering is
rather strong - indicated by the fact that it is visible with the naked eye - there are some tech-
nical difficulties and some principle shortcomings. The technical problem is that the scattered
light from the highest layersin the stratosphere should be used, and, thus, the Rayleigh scattering
fromthelower layers hasto befiltered out either by temporal gating or by spatial discrimination.
Usually, afast shutter is used that opens after the light has propagated from the laser launching
telescope to alayer at 10-20 km and back [19].

A Light from a
star at infinity
Yy \
=100 km
Rayleigh scattering
of the atmosphere
/
=10 km
v | ]
<>
3.5m mirror =1m Launching
telescope

Figure 3.16: Elements of alaser guide star system. The launching tel escope projects the beam
into the mesosphere at 100 km where the artificia star is observed with the main tel escopes.
The wedge illustrates the effect of a constant tilt over both apertures: from the main telescope
thelaser guide star seems to be in the same position as before since thetwo tiltscancel. One can
also estimate the effect of the cone effect by comparing the diameter of the cone at an altitude
of 10 km with that of the beams from infinity.

The difficulty isthen to relate the wave-front from the artificial star at 10-20 km to thewave-
front that comes from the astronomical object at infinity. The problem isthat the light from the
laser guide star is not affected at all by the highest layer of turbulence as thisis where the arti-
ficial star is created, and that the lower layers of turbulence are illuminated by a cone with the
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laser guide star at the top of the cone. The light from the artificial star always travels through
substantially narrower portions of the turbulent layers than the natural star light. Also, the tur-
bulence “seen” by the spherical wave from thelaser star isdlightly different from the turbulence
that affects a plane wave from an object at infinity. This is why this effect is aso called fo-
cal anisoplanatism or cone effect. The turbulence profilein Fig. 2.2 shows that the contribution
from turbulence at high layersisnot to be neglected. There have been suggestions to deal with
the cone effect by creating multiple guide starsin order to properly scan at least the lower layers
[61].

Creating an artificia star in the mesosphere at an altitude of about 100 km reduces the focal
anisoplanatism as the cone in the highest turbulent layers at an altitude of 20km has already
80% of the diameter of the parallel beams from the star at infinity propagating into the telescope
aperture. Fig. 3.16 describes the situation, and illustrates too why the image motion cannot be
measured with a laser guide star. The laser light projected through a launching telescope into
the mesosphere is affected by the atmospheric turbulence. It suffers from the wave-front slope
that makes the artificial star move randomly in the mesosphere. Observing the laser star from
the ground adds another random slope to the wave-front travelling downwards. If the two slope
termsareidentical, likein Fig. 3.16 where the dope is represented by awedge, the artificial star
as seen from the ground remainsin the same position. In practice, theimage of the artificial star
in the wave-front sensor camera moves randomly.

The higher orders of the phase distortion on the way up are responsible for the blurring of
the intensity distribution. Therefore, the artificial star as a dighly extended object can be used
to measure the higher order terms of the turbulence in the downward propagation unaffected by
the wave-front distortion on the way up.

Recently, there have been suggestionsto measure thetip-tilt termwith thelaser guide star. R.
Foy suggested to achieve this by creating a polychromatic artificial star exciting different lines
of the sodium and deriving the slope information using differential effects [15]. Other authors
proposeto observe thelaser from atel escope quite adistance away from the main telescope. The
tip-tilt information is obtained by monitoring the movement of the now elongated laser guide
star and compare it to a natural star close to the elongated intensity distribution [66]. If it were
possible to measure the wave-front slope with the laser guide star one could achieve 100% sky
coverage under all circumstances. However, neither technique has been verified experimentally.

The diameter of the spot in the mesosphereis approximately equal to the seeing inrad times
the altitude, i.e. 0.5m in 1" seeing. An object of thislateral size has an angular diameter of 1”
from the ground. The image of the laser guide star is degraded due to seeing, and the image
shape is the convolution of the seeing disk with the object in the mesosphere that itself has ap-
proximately the shape of the seeing disk. The result of the convolution is that the angular size
of the laser guide star is /2 times larger than the seeing.

The drawback of alaser guide star in the sodium layer isthe power requirement. The sodium
atomsarein alayer of about 10 km thickness in the mesosphere originating from meteorite ab-
lation. The brightness of the resonance fluorescence is proportional to the column density of
sodium atoms and the laser power, aslong as the laser power is below the saturation limit. The
column density varies with season, with a maximum in winter and a minimum in summer, and
with geographical latitude. 1t can vary by afactor of two or morewithin afew days. Thereisnot
yet a sufficient number of measurements to give more specific numbers. In experiments with a
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1 W continous wave dye laser amy = 12 magnitude sodium star was created [ 7]. With ALFA,
using a 3W laser of the same type, the magnitude of the created laser guide star was my = 10

[65].

3.7 Outlook —Multi-layer adaptive optics

In the following, we discuss a new method for measuring separately the turbulence in multiple
atmospheric layers by combining intensity measurements like in a curvature sensor with wave-
front gradient measurements in a Shack-Hartmann sensor [23]. The isoplanatic angle can then
be increased by doing this measurement for several stars ssimultaneously and applying the in-
formation on the wave-fronts to deformable mirrorsin the image planes of the turbulent layers
[44]. Then, amuch larger field of view can be corrected. The optical design of a system with
deformable mirrorsin the proper positionsis rather smple. The difficulty liesin the separation
of the aberrations of different layers.

The problem of measuring the atmospheric turbulence can be reduced to imaging a phase
object, i.e. an object affecting only the phase of the wave-front. Thisisacommon problemin
microscopy, and defocusing isan old cure. Then, the phase object that isinvisiblein the focused
image shows upintheintensity distribution. If the phase variesonly dightly, (¢(x) < 1) theim-
age intensity is proportional to the curvature of the phase distribution. Thus, the scintillation on
the ground could be used for an estimate of the high altitude layers[69]. In order to reconstruct
the phase distribution completely, the intensity distribution has to be measured in two planes po-
sitioned symmetrically to the image plane of the phase object. The curvature sensor is based on
thisidea

Figure 3.17: Illustration for the optica paths of two different stars.

To simplify the explanation, we start with two dominant layersthat carry the bulk of the tur-
bulence. Then, theintensity distribution /; () in the conjugate plane L} of layer L, inFig. 3.17
would be determined solely by theturbulenceinlayer L,. Theturbulencein layer ., hasno ef-
fect on the intensity distribution in itsimage plane, L). Vice versa, the intensity distribution in
LY is caused only by the turbulent layer in L;.

Assuming that the phase variation isweak, with ¢(x) < 1, the complex amplitude immedi-
ately behind layer L, can then be written as

ur(xy) =14 ipr(a1).
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The wave-front amplitude u; (z2) immediately before L, isthe Fresnel diffraction pattern of the
turbulencein L. Using an approximation for Fresnel diffraction for small angles[59], itis
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with k& = 27 /A. The turbulencein layer L, addsto theimaginary part of u; () yielding
. 0?
ualen) = 1+ (as) + dalea) + 2000, (3.48)

Calculating the wave-front in image space, one has to be careful to include the phase distur-
bances of both layers. Thus, the complex amplitude () in LY is, neglecting imperfections
of the imaging optics, identical to us(x2) in Ly,. However, to calculate the wave-frontin L the
turbulencein L, hasto be considered. This can be done by first calculating the complex ampli-
tudein | asthe defocused image of layer 1.,, and then calculating the distributionin L/, asthe
defocused image of L.
With u)(2}) = us(2),) (disregarding magnifying factors) the complex amplitudein plane L] is
L , st 0%uq(2!
) = el i)
. , , shy %o (!

= Uil + (e - )
The phase parts of both «} (Eg. 3.49) and «), (Eq. 3.48 with u(z}) = us(x,)) are given by
o1 + ¢2. Thus, the exact position of a Shack-Hartmann sensor measuring the wave-front tiltsis
not very critical.

(3.49)

Ly Lo

Figure3.18: Designfor a Shack-Hartmann curvature sensor. A beam splitter isused to send the
lighttothelenslet array in theimage planeof ;. Measuringthetotal intensity in each sub-image
of each lenglet array providestheinformation on the wave-front curvature, and the measurement
of theimage centroid positionsallows the reconstruction of the sum of the turbulenceslikein a
Shack-Hartmann sensor.

The intensity distributionsin L} and L/, can be calculated as
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Theintensity distributionin L) isunaffected by ¢, and theintensity distributionin L/, isunaf-
fected by ¢,. Using the difference of theintensity distributionslike acurvature sensor yieldsthe
second derivative of the sum of the phases. Thisisthe result of ameasurement with a curvature
sensor neglecting the wave-front radial tilt.

Using Shack-Hartmann sensors in both planes 1} and ), the resulting phase ¢, + ¢, of the
wave-front ismeasured in each plane by determining the wave-front tilt in each subaperture (see
Fig. 3.18). Additionally, theintensity distribution can be measured in both planes by integrating
over each subaperture of thelendet array. The normalised signal 17 — 1, /17 + I} isthe quotient
of the second derivative of the sum and of the difference of the phases. Asthe sum of the phases
is measured directly, the difference of the second derivatives can be determined and, thus, the
phase curvaturein both layers.

Figure 3.19: Illustration of the multiplexer mode of the Shack-Hartmann curvature sensor. For
the sake of clarity only one lenslet array is displayed. In each subimage the total intensity and
the centroid position can be measured separately and, thus, different patches of the wave-front
can be reconstructed.

The isoplanatic angle can now be enlarged by observing multiple stars with the Shack-Hart-
mann sensor asdisplayedin Fig. 3.19. The phase aswell astheintensity distribution can be mea-
sured for each star individually. Then, the information about the different layers can be stitched
together to steer the deformable mirrorsin the conjugate planesof 7, and L-.

Practical consder ations

Before placing the Shack-Hartmann curvature sensors in the conjugate planes of the turbulent
layerstheir altitude has to be determined by e.g. using a method suggested by Vernin [92].

So far, the discussion has been restricted to two layers. If the turbulence profile indicates
multiplestrong layersthere hasto be a Shack-Hartmann curvature sensor in each conjugate plane
of those layers. The position of the deformable mirrors can be adjusted to correspond to the
conjugate planes of the layers. The number of deformable mirrorsin areal system isobviously
fixed. However, the system could be designed with several deformable mirrorsusing only the
reguired number.

The isoplanatic angle is limited by the separation of the stars used for the measurement of
the turbulence. The practical limitation is given by the field of view of each subimage of the
Shack-Hartmann sensor. To correct 50 Zernike modes one needs about 8x 8 subapertures each
of whichwith afield of view of 30x 30”. Then, with apixel scale of roughly 0.5” every subimage
has a size of 60x 60 pixels, and the total size of the CCD is500x 500 pixels.



Chapter 4

Examples of Adaptive Optics Systems

The consequence of the previous discussions is that a high order adaptive optics system needs
alaser guide star to provide good sky coverage. There isanumber of laser guide star systems
for test or military purposes: The US Air Force 1.5-m telescope at the Starfire Optical Range,
New Mexico, isequipped with alaser guide star system using Rayleigh scattering with the main
task to observe satellites [18]. The Multi-Mirror Telescope, Arizona, also has alaser guide star
system to create a Sodium guide star [51] that serves mainly as atestbed for the planned upgrade

Counts Uncorrected, seeing ~1.2"

Corrected, FWHM ~0.15"

0.53"
Counts —

Figure4.1: Thefirst result with ALFA. This near infrared image (A = 2.2 pm) of 72 Peg, with
amagnitude my = 5.75, was taken on October 7, 1996 at 10pm. The 0.53" binary is clearly
resolved. Thisisaraw image without any image processing.
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of the telescope to a single 6.5-m mirror [83]. Tests for the Keck Telescopes in Hawaii were
performed at the 3-m Shane Telescope of the Lick Observatory, California, closing the loop on
a Sodium laser guide star for the first time [55]. A group at the University of Chicago, lead by
Edward Kibblewhite, designed alaser guide star system, ChAOS, that was tested recently at the
Apache Point 3.5-m telescope, New Mexico [84].

In 1994, wedecided to build ALFA?, an adaptive optics system with a97 actuator deformable
mirror and with alaser guide star, as a common user instrument for the Calar Alto 3.5-m tele-
scope. The project is a collaboration between the Max-Planck-1nstitute for Astronomy, respon-
sible for the adaptive optics system, and the Max-Planck-Institute for extraterrestrial Physics,
providing the laser guide star system [24]. We saw first light in September 1996.

As apreparation for the high order adaptive optics system we built a tip-tilt system for the
3.5-m telescope, CHARM, that eventually became the prototype for the ALFA tracking system
and for our contribution to the UKIRT Upgrades Programme. For this programme we provided
a new telescope front ring with a tip-tilt secondary mirror and the required wave-front sensor.
The two tip-tilt systems will be described briefly before ALFA will be discussed.

41 Tip-tilt systems; CHARM and UKIRT

CHARM? wasdesigned asasimpletip-tilt correctingmodul eto the near-infrared cameraMAGIC
[38] for the 3.5-m telescopeon Calar Alto. For tip-tilt sensing inthevisible the systemisequipped
withaCCD camera. Inregionswhereno bright enough optical starsareavailable (e.g. star form-
ing regions, molecular clouds and the Galactic Center), we have also implemented for the first
time amode in which MAGIC can be used both as atip-tilt sensor for infrared sources, and si-
multaneoudly as the science camera[26].

CHARM was built between March and September 1993. It fits into MAGIC's mounting
flange and |leaves the tel escope focus in the same position with or without the CHARM reimag-
ing optics in the beam. These optics can be moved remotely in and out of the telescope beam.
Fig. 4.2 displays the instrument. The relay optics of ALFA are based on this design.

The optical design is similar to the MMT tip-tilt system [95]. A single parabolais used to
imagethetel escope pupil onthetip-tilt mirror - whichisin thefocal plane of the parabolic mirror
- and to reimage the telescope focus into MAGIC's focal plane (see Fig. 4.2). In order to keep
the telescope focus in the same position with and without CHARM, we have changed the MM T
design in positioning the telescope Cassegrain focus closer to the parabola. Consequently, the
reimaged focus moves further away from the parabola. The two folding mirrors and the tip-tilt
mirror are mounted on a motorised stage and can be moved remotely in and out of the telescope
beam. Thefolding mirror just before the infrared camera has a dichroic coating that reflects the
infrared and transmits the visible to the CCD camera.

The instrument has two image motion sensors:. MAGIC in subarray modeintheinfrared and
aCCD camerainthe visible. Thetip-tilt mirror is mounted on a piezo unit (PI-S330, manufac-
tured by Physik-Instrumente, Waldbronn) with a maximum throw of 3.2" in theimage plane. A
VME bus system under VxWorks is used to run the instrument, i.e. to do the image centroid

LALFA stands for Adaptive opticswith Laser For Astronomy
2CHARM isan acronym for Camera High Angular Resolution Module
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Figure4.2: A sketch of the opto-mechanical setup of CHARM. The mounting flangeiscut open
to show the details. Thetwo folding mirrors and the tip-tilt mirror are mounted on a motorised
stageto movethem in and out of the beam. The tel escope focus without CHARM isin the same
positionasthereimaged focus. Thelower folding mirror hasadichroic coating to reflect infrared
wavelengths (> 1 pm) into MAGIC and to transmit visible wavelengths into the CCD camera
(not shown here). The focal length of the parabolais 600 mm and the diameter is200 mm. The
tip-tilt pupil mirror isin thefocal plane of the parabola

calculations and to provide the remote control of the movable mirrors. With agraphical user in-
terface CHARM can be controlled from any computer on the network. The computer soft- and
hardware is identical to the tip-tilt system of the UKIRT Upgrades programme [67] and very
similar to ALFA.

An AstroCam 4201 controller with a Peltier cooled EEV CCDO02 chip with 6 €~ read noise
isused in the tip-tilt sensor in the visible (AstroCam, Cambridge, UK). With a pixel rate of 40
kHz, the chip hasto be read out in subarray mode to produce a suitable framerate. Reading out
a 32 by 32 pixel subarray (i.e. 3.5" by 3.5” at apixel scale of 0.11") takes about 5 msec when 8
by 8 pixels are binned. Asthe binning is done before the analog-digital conversion, it does not
add to the read noise of the chip. Exposure times of 5-20msec and aread out time of Smsec
result in loop frequencies between 30 and 100 Hz.

In Sect. 3.4.1, the measured power spectra of the image motion were discussed, and an ex-
ample for the image quality of atip-tilt corrected image was given. Here, a corrected and an
uncorrected image of asingle star (Fig. 4.3) are compared in order to evaluate the image quality
of thetip-tilt correction using the formulas given in Sect. 3.1.1 and 3.4.1.

The data were taken in July 1995 on the Calar Alto 3.5-m telescope. A 9th magnitude star
(SAO71942) was used both as a tip-tilt guide star for centroid tracking in the visible and as a
‘science’ object in theinfrared. The seeingwas 0.76” at 2.2 um, corresponding to aFried para-
meter of o = 0.6 m, and the Strehl ratio of the uncorrected image was 2.7%. Running CHARM
at 50 Hz, the single axis rmsimage motion was reduced to 0.026” which is equivalent to reduc-
ing the phase variance due to tip-tilt aloneto oy, = 0.21 rad* (Eq. 3.30). This variance and the
contribution from the uncorrected high order modes (Eq. 3.4) predict a Strehl ratio of 6.8%.

However, the theoretical value cannot be achieved since the measured peak of the intensity
distribution is reduced to about 85% of the maximum by integrating over one pixel athough
this pixel has asize of haf the diffraction limit [22]. Thus, one cannot achieve more than 5.7%
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Strehl ratio. The difference between this value and the measured value of 4.6% is acceptable
as one also hasto consider that the noise in the measurement forms anon zero background and
the measured position of the image centroid and, thus, the residual image motion appear smaller
than they actually are.

Counts Strehl ratio 0.027

800 4 FWHM 0.76"
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Figure4.3: Tip-tilt correction with CHARM: Uncorrected (top) and corrected (bottom) images
observedusingMAGIC at 2.2 ;zm, and corrected at 50 Hz with the CCD cameraastip-tilt sensor.
Thestar hasamagnitudeof my = 9. Themeasured Strehl ratio of 0.046is80% of thetheoretical
valuefor atip-tilt corrected image under these seeing conditionsat 2.2 ;;m on a3.5-m tel escope.

One can also make a careful estimate about the effective wind speed: With a closed loop
bandwidth of about 1/10 of the tracking frequency of 50Hz, i.e. fsq, = 5 Hz, theresidual phase
variance of o, = 0.21 rad? and the tracking bandwidth fr = 1.624/D, one can use Eq.(3.37)
to estimate the wind speed to be about 9m /sec.

The second tip-tilt system was designed as part of the Upgrades Programme for the 3.8-m
UK Infrared Telescope (UKIRT) on Mauna Kea, Hawaii. This programmewas started in 1991
by the UK Science and Engineering Research Council through the Royal Observatory Edinburgh
(ROE). The goal was to routinely provide near-diffraction limited images at 2.2 um [37]. The
main elements of the system are an adaptivetip-tilt secondary mirror system mounted on ahexa-
pod structure for active collimation, an upgraded primary mirror support system and modifica-
tionsto the telescope and dome to reduce dome seeing, so as to take advantage of the excellent
natural seeing on Mauna Kea.

The contribution of the MPIA to this programmeisanew tel escope front ring with thetip-tilt
secondary and the hexapod mount, and a small Shack-Hartmann wave-front sensor to measure
tip-tilt and focus [27]. The primary mirror support system and the telescope modifications were
provided by the Joint Astronomy Center in Hawaii in collaboration with the ROE.
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Figure4.4: UKIRT: The new tip-tilt secondary mirror (diameter 313 mm) mounted on a hexa-
pod structure. The telescope vanes covered with athin sandwich structure to dampen mechan-
ical oscillations. The sky shutter allows to optimise the telescope aperture for observationsin
the mid-infrared.

The Hexapod unit with the piezo platform was manufactured by Physik-Instrumente, and it
isshown in Fig. 4.4. The secondary mirror with adiameter of 313 mm was fabricated by Horst
Kaufmann, Crailsheim. With an ultra-sound light-weighting technique the weight of the sec-
ondary was reduced from 5.7 to 2 kg allowing for a maximum tip-tilt frequency of 225Hz. The
maximum tip-tilt angle is 5 and the maximum chop?® angleis 30" up to a frequency of 10 Hz.
Problemswith highwinds at Mauna K earequired extrameasures to increase the mechanical sta-
bility of thetop end. Therefore, the vanes are covered with a thin sandwich structure (manufac-
tured by Westinghouse Electric Corporation, Sunnyvale, USA) increasing the modal damping
coefficient by afactor of 60 over blank steel.

The hexapod provides six degrees of freedom for the secondary mirror for low corrections
of telescope aberrations due to mechanical flexure of the support structure, the so-called active
optics. Thethrow of the hexapod legsissufficiently largeto use them to focusthetelescope. The
three piezo-electric actuatorsfor the adaptive mode correct the image motion and the defocus due
to atmospheric turbulence. The latter is possible since thereis alarge | everage between moving
the secondary and the resulting focus shift: moving the secondary mirror 1 m aong the optical
axis shifts the telescope focus by 200 4m. The maximum motion of the piezos of 30 ym shifts
thetelescopefocusby 6 mm whichistherangeof motion of thetelescope focusdueto turbulence
under typical seeing conditions.

3Chopping is an imaging technique for mid-infrared observations (in the wavelength range > 5 ym) to reduce
the dlowly fluctuating thermal background. Here, the image position is moved at a frequency of about 1 Hz with
a chopping mirror. With an exposure time of about 10 msec one obtains several images with the object and then
several image with blank sky in the same area of the detector. The image intensity is obtained by calculating the
difference



66 CHAPTER 4. EXAMPLES OF ADAPTIVE OPTICS SYSTEMS

Therefore, the wave-front sensor of the UKIRT system was designed as asmall Shack-Hart-
mann sensor with 2 x 2 subapertures. Thesame CCD cameraand electronicsisused asfor CHARM.
The software had to be extended to handle the four subimages and to reconstruct the first eight
Zernike modes as described in Sect. 3.2.1. The requirement to enable tip-tilt correction on both
ends of the chop throw made it necessary to have the camerarotatable so that the images of the
guide star on both ends of the chop can be placed in an optimal position for fast read out of the
subimages, that is as close as possible to the horizontal register of the CCD chip.

Thetip-tilt systemwasinaugurated in August 1996 and immediately functioned without prob-
lems. Theinitial worry about the tel escope oscillations disappeared after the first images were
taken. The mechanical disturbances proved too small to measurably deteriorate the image qual-
ity. Fig. 4.5 displays power spectra of corrected and of uncorrected image motion with a track-
ing frequency of 100 Hz. The closed loop bandwidth is then approximately 10Hz. The dight
amplification around 20 Hz is caused by the closed loop transfer function (see Sect. 3.4). This
increases the contributions of the oscillations around 20 Hz. Therefore, thermsimage motionis
reduced from typically 0.23” to only 0.035”. This has to be compared to an rmsimage motion
of 0.025” that was achieved with CHARM on the more stable 3.5-m telescope at Calar Alto.
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Figure4.5: Power spectraof the corrected and uncorrected imagemotionat UKIRT with atrack-
ing frequency of 100 Hz. The mechanica oscillationsaround 20 Hz are readily apparent.

An example of the improved image quality isshown in Fig. 4.6: The peak intensity tripled
to 12% Strehl ratio and the FWHM at 0.25” is only a factor of two larger than the diffraction
limit. Although only tip and tilt are corrected the image shows the seeing limited halo around
the almost diffraction limited spike as discussed in Sect. 2.6.

Theformulasdevelopped in Sect. 3.1.1 and 3.4.1 predict this Strehl ratio very nicely. In0.5”
seeing at 2.2 ym the Fried parameter isr, = 0.9 m. Theresidual singleaxisrmsimage motion of
0.035" correspondsto aresidual phasevariance dueto tip-tilt aloneof o, = 0.46 rad® (Eqg. 3.30).
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Figure4.6: Uncorrected (left) and tip-tilt corrected (right) image of asingle star at UKIRT. The
FWHM isimproved from 0.5” to 0.25” (thediffraction limit at the observingwavelength of A =
2.2 um is0.12"). The Strehl ratio increased from 4% to 12%.

The phase variance due to the uncorrected high order terms and the over-compensated comais
Oecentroid = 1.741ad® for D/ry = 3.8/0.9 = 4.2 (Eq. 3.4). Thus, the Strehl ratio is 15% which
is reduced to 12.5% due to the finite pixel size of the infrared camera, which agrees very well
with the measured value of 12%. However, due to the peculiar form of the power spectrum the
Kolmogorov theory should be applied with care.

The example for the determination of the limiting magnitude in Sect. 3.1.3 gave a value of
about my = 151in 0.76” seeing at 2.2 um with 5 electrons read noise. Similar instrumental
parameters in better seeing at UKIRT predict a value of about my = 16. In the meantime, a
value of my = 16.5 has been confirmed experimentally [36].

M ore measurementswhen chopping was switched on and in 40 mph wind further underlined
the excellent performance of the system. The FWHM wasimproved from 0.59” t0 0.28” in high
wind, and from 0.69” to 0.30” when tip-tilt correction was done together with chopping.

However, the adaptive focus correction suffers from insufficient stroke of the piezos. Al-
though the motion rangeis of the same order of magnitude as the rmsimage motion, it isinsuffi-
cient to cover therangeof peak-to-valley valuesthat are about 6 timeslarger. One could combine
the rather dlow motion of the hexapodsto correct for the Slow moving large values of turbulence
induced focus, and let the piezos do the adaptive correction at the same time. This mode has yet
to be implemented. Simulations have shown that the Strehl ratio could be improved from 12%
to about 14% when the focus is corrected adaptively.

The UKIRT tip-tilt system is now part of the telescope, and it is used every night. Although
the performance of tip-tilt systems depends heavily on the seeing conditions and do not allow
to go to the diffraction limit they provide a steady improvement of theimage quality increasing
the scientific output of atelescope at virtually no penalty.
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4.2 ALFA, an adaptive optics system with alaser guide star

The performance goal for ALFA was to achieve above 50% Strehl ratio in the near infrared at
2.2 um under average seeing conditions, and to have a good sky coverage. Thus, alaser guide
star ismandatory, and, given the weather conditionsat Calar Alto with amedian seeing of 0.9"at
2.2 um, the number of corrected modes on the 3.5-m telescope has to be larger than 50. Under
these seeing conditions, the perfect correction of 50 modesgivesaStrehl ratio of 78% (Eq. 2.45).
Taking the finite bandwidth (see Fig. 3.14), the detector noise and other error sources into ac-
count 50 modes were considered to be sufficient to achieve 50% Strehl ratio.

Since the project was planned on a time scale of two years between starting the design in
1994 and first light in 1996 we decided to purchase the main parts of the system. The 97-actuator
deformablemirror with PMN (lead-magnes um-niobate) actuatorswas purchased from Xinetics,
Littleton, USA#, the high order wave-front sensor with amaximum of 100 subapertures and the
soft- and hardwareto do the wave-front reconstruction and to control the deformable mirror was
provided by Adaptive Optics Associates (AOA), Cambridge, USA, thefast CCD camerafor the
Shack-Hartmann sensor is a product from Lincoln Laboratories, MIT, Lexington, USA, and the
laser systemwith a3-W dyelaser wasbought from Coherent, SantaClara, USA. Thecameraand
the software of the tip-tilt system are the same asin CHARM. The opto-mechanical design was
donein house aswell asthe electronicsfor the optical elementsthat can be controlled remotely.

421 Optics

Two paraboloids are the main imaging elements of the optical system. The first paraboloid im-
ages the telescope pupil onto the deformable mirror and, after the reflection at the deformable
mirror, the second paraboloid reimages the telescope focus into the infrared camera. Similar to
CHARM, it wasthe design goal to have the reimaged tel escope focusin the same position asthe
telescope focus without any optical elements from ALFA. Thus, in case of very bad seeing or
mal functioning of the adaptive optics system the tel escope can be used without ALFA by diding

4The reason for buying a 97-actuator mirror instead of a 50-actuator mirror was simply that it was an off-the-
shelf product of Xinetics. The next smallest mirror has 36 actuators which seemed too small for ALFA.
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two mirrors out of the beam. Since the image quality of a high order adaptive optics system is
always close to the diffraction limit the pixel scale of the infrared camera should be chosen ac-
cordingly. Without ALFA, large pixels are more convenient. Therefore the f/10 telescope focus
is converted to an f/25 focus by the relay optics.

97 Actuator

Deformable
Mirror
Tip-tilt 3
Mirror
/10 Paraboloid
IR/Visible
Beamsplitter

f/25 Paraboloid

IR f/25 Focus

Figure 4.7: The main optical elements of the optical system of ALFA: The first folding mir-
ror isthetip-tilt mirror since the deformable mirror does not provide sufficient stroke to correct
for theimage motion. The f/10 telescope focusisin the front focal plane of the f/10 paraboloid
(focal length 662 mm) that images the telescope pupil onto the deformable mirror. After re-
flection at the deformable mirror the telescope focus is reimaged by the f/25 paraboloid (focal
length 1594 mm), enlarged by afactor of 2.5. The IR/Visible Beamsplitter reflects the infrared
band into the science camera and transmits the visible band into the wave-front sensor arm (see
Fig. 4.8).

The diameter of the deformable mirror determines the basic parameters of the optical sys-
tem displayed in Fig. 4.7. With the f/10 telescope focusin the front focal plane of the f/10 para-
boloid its focal length has to be 662 mm in order to image the telescope pupil onto the (tilted)
deformable mirror with an effective diameter of 66 mm. After reflection at the deformable mir-
ror, the paralel beam is intercepted by the /25 paraboloid with a focal length of 1594 mm to
reimage the telescope focus into the infrared camera®. The first folding mirror is used as atip-
tilt mirror, and the last folding mirror acts as a beam splitter reflecting the infrared downwards
into the infrared camera and transmitting the visible into the wave-front sensor arm. The field
of view has a diameter of 3 arcmin. The optical design was provided by E. Harvey Richardson
from the University of Victoria, Canada, who also designed the CFHT adaptive optics system
which is very similar to ALFA. However, due to the smaller diameter of the bimorph mirror
(42mm) employed at the CFHT thefocal lengths of the paraboloids can be shorter and the total
dimensions of that system are about 1 m x 1.2 m.

The complete ALFA system mounted on a breadboard is presented in Fig. 4.8. One can
recognise the five optical components described above: the tip-tilt mirror mounted on a linear
motorised stage, the /10 paraboloid, the deformable mirror and the f/25 parabol oid, and the par-
tially hidden IR/Visbeamsplitter that reflectstheinfrared focusdownwards. The additional com-
ponentsformfivegroups. the FISBA interferometer (FISBA Optik, St. Gallen, Switzerland), the

SAsaresult of the optical design the f-ratio of the reimaged focus was changed to f/24 instead of f/25. Out of
habit, we keep calling it f/25.
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f/10 reference fiber, to provide a perfect point source in the telescope focus, the TV guider, the
Shack-Hartmann sensor and the tip-tilt sensor with the Na/Optical beamsplitter to separate the
light from the sodium guide star from the natural tip-tilt guide star.

Deformable Mirror
Tip-tilt Sensor Na/Optical Dichroic Tip/Tilt Mirror (Xinetics)

/f/lO Paraboloid

FISBA
Interferometer
/
Shack-Hartmann Sensor /10 Reference Fiber f/25 Paraboloid

(AOCA) TV Guider

Figure 4.8: A CAD drawing of the ALFA breadboard with all opto-mechanical elements.
The optical path in Fig. 4.7 is extracted from this drawing. Thus, the tip-tilt mirror, the f/10
paraboloid, the deformable mirror, the f/25 paraboloid and the (partially hidden) IR/Visible
beamsplitter can easily be identified. Additionaly, thereis an artificial light source for adjust-
ment and calibration purposes, the FISBA interferometer to control the mirror surface, the TV
guider for acquisition, and the wave-front sensor arm with the Shack-Hartmann sensor and the
tip-tilt sensor. Between thetwo the light is split by the Na/Optical beamsplitter.

The FISBA interferometer, a Twyman-Green interferometer, is a commercia product, to
control the surface of the deformablemirror. Thisinterferometer does not obstruct the telescope
beamasit “looks’ perpendicular at the mirror. After applying avoltageto the deformablemirror
the actuators assume dightly different lengths that have to be equalised by adjusting the voltage
carefully. Theinterferometer isused to control this process. The rmsaberration of the reflected
wave is about 600nm when the same voltageis applied to al actuators and about 100nm after
adjusting the voltages. In the infrared thisis equivalent to a phase variance of about 0.1rad?.

The /10 reference fiber is a monomode fiber with a core diameter of 3.6 ym that serves as
aperfect point source for alignment and calibration. It can be moved remotely in and out of the
beam.

The TV guider is used for acquisition. Asthefield of view of the infrared cameraMAGIC
isonly 1 arcmin it is very helpful to have a sensitive camera with a4 arcmin field of view to
acquire the astronomical object.

The Shack-Hartmann sensor was provided by AOA. A close-up view in Fig. 4.9 displays
the individual components. Thefield select mirror isin areimaged telescope pupil plane so that
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Figure4.9: The elements of the Shack-Hartmann sensor (see Fig. 4.8 for the compl ete system).
Thefield select mirror is placed in reimaged pupil plane of the telescope, moving theimage in
the CCD cameraif themirror istilted. Thereimaged tel escopefocus can be masked by applying
field stopse.g. to block the Rayleigh scattering when using alaser guide star. Thelenslet arrays
can be changed remotely, the range of subaperturesis from 3x3to 12x12. The Lincoln Labs
CCD camera allows frame rates between 100 and 1206 Hz.

tilting this mirror resultsin amovement of the image in the Lincoln Labs CCD camera. (Tilting
thismirror must not be confused with the tip-tilt required for image stabilisation.) The field se-
lect mirror allowsto place astar from acircle with 1arcmin diameter around the optical axisin
the center of the subimages of the Shack-Hartmann sensor. Mechanical constraints lead to this
solution since the CCD camerais too large and to close to the breadboard to be moved around
in the image plane. Two field stops and a reference fiber source can be inserted into the reim-
aged focus. Thefield stopsarerequired if anatural guide star isin adense star cluster leading to
crosstalk between subimages, or if thelaser guide star is used and the Rayleigh scattering hasto
be blocked for the same reason. Eventually, the telescope pupil isimaged onto the lendet array
that forms the subimages in the CCD camera. The lendets can be changed remotely from 3x3
subaperturesto 12x 12 subapertures. The focal length of all lendetsisidentical so that the pixel
scale in the Shack-Hartmann sensor isalways 0.75”. The CCD cameracan befocused remotely,
also allowing to adjust the differencein foci between anatural guide star at infinity and the laser
guide star at 100km. The differencein focal position is 70 mm in the /25 beam.

The Lincoln Labs CCD camerahas athinned 64 x 64 pixel chip that isused in frametransfer
mode. The maximum frame rate is 1206 Hz with a read noise of 6 electrons. At the slowest
framerate of 100 Hz the read noiseis dightly higher at 9 electrons due to increased dark current
asthechipisonly cooled to-5°C. Anupgrade of the camerawill have atwo stage thermo-electric
cooler providing -35°C eliminating the problem with the dark current and reducing theread noise
well below 5 electrons,

The tip-tilt sensor has an AstroCam (Cambridge, UK) CCD camerawith a 4201 controller
giving 6 electrons read noise. Except for the relay optics in front of the camerathis is exactly
the CHARM system. A new CCD camera head will have less than 2 electrons read noise and a
guantum efficiency that is roughly doubled since the chip will be thinned.

Thesize of thebreadboardis2.7 m x 1.5m and thewholeassembly ismounted viaa uminum
struts to an aluminum flange that is bolted to the telescope mounting flange. The total weight
(including infrared camera) is 1.1 tons. Fig. 4.10 shows the CAD drawing of the breadboard
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mounted on the mirror cell and Fig. 4.11 shows a photograph of the telescope with ALFA being
mounted at the mirror cell.

Tizieare

l[.]l

Light Path
Mirror Cell

Breadboard \

Science Instrument

Figure4.10: The CAD drawing of thewhole system mounted on the mirror cell givesan idea of
the dimensions. The orientation is the same asin Fig. 4.8 with the /25 paraboloid on the right.

4.2.2 Calibration and wave-front reconstr uction

The adaptive optics system attemptsto shape the wave-front such that the spotsin the subimages
areintheir default position. Thus, it iscrucial to properly define the default positions. These po-
sitions do not necessarily correspond to the positions of a plane wave in the plane of the lendet
arrays as the light passes through alarge number of optical elements between the IR/Vis beam-
splitter and the lendet array, introducing aberrations. Vice versa, a plane wave in the plane of
the lendet arrays means an aberrated wave in the plane where the beamsplitter is and, thus, in
theinfrared camera.

One can either try to minimise the aberrations between the beamsplitter and the lendet array,
or one alignsthe optical system with the artificial point source (thef/10 referencefiber) until the
image quality in theinfrared camerais satisfactory. One then defines the subsequent positions
of the spots in the Shack-Hartmann sensor as default positions. Now the alignment of the opti-
cal system isthe crucia procedure as the adaptive optics system reconstructs exactly this shape
of the wave-front. This has the consequence that any aberrationsin the wave-front e.g. due to
misalignment are reproduced by the adaptive optics system. Also, any static aberration in the
deformable mirror that cannot be corrected for by aligning the /10, the f/25 paraboloid or any
other mirror limit the final image quality. Therefore, the flattening procedure with the FISBA
interferometer has to be done with great care.

Only low order static aberrations up to the order that is being corrected for can be taken out
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Figure4.11: ALFA on the 3.5-m telescope at Calar Alto.
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with the deformable mirror by putting offsets on the Zernike modes. Orders higher than the de-
gree of adaptive correction, like those that appear if two neighboured actuators are differingin
length cannot be corrected with Zernike offsets.

The calibration procedure consists of thefollowing steps: After thesystemisoptically aligned
using the f/10 reference fiber as a perfect point source, the spots in the Shack-Hartmann sensor
are defined as default positions and around every spot the subimage sizeis defined. These boxes
areabout 4" x 4" in size depending on the number of subapertures. Inthefollowing step, theposi-
tions of the subimage centroidsare determined asafunction of the Zernike modes. In Sect. 3.2.1,
this process was done by computing the integral over the subaperture requiring the exact knowl-
edge of the position of the subaperture with respect to the telescope aperture. This knowledge
can be ensured by very precise adjustment of the reimaging optics. Another approach isto ap-
ply the Zernike modes (in suitable order and slightly modified to take the actuator pattern into
account) to the deformable mirror, and then to measure the spot pattern in the Shack-Hartmann
sensor directly. This technique was chosen by AOA. The complete calibration procedure de-
scribed in this paragraph is performed automatically controlled by the software.

In terms of the wavefront reconstruction discussed in Sect. 3.3, the interaction matrix O,
is determined experimentally by applying the Zernike modes to the deformable mirror, and the
wave-front is being reconstructed using aleast-squares algorithm (Eg. 3.25). Theinverse of the
matrix product ©% 0, is calculated numerically after the calibration is finished. When the sys-
temisrunning in closed loop the reconstruction of the wave-front and the subsequent computa-
tion of themirror drive signals hasto be donein lessthan 1 msec. Therearetwenty digital signa
processors (DSP) to perform these tasks partially in parallel. The DSPs are mounted in groups
of four on Ariel Hydra-1l boards and are manufactured by Texas Instruments (TMS320 C40).
Four DSPs process the subimages, subtracting the bias and correcting the gain, eight DSPs de-
termine the image centroids and wave-front gradients, four DSPs then perform the wave-front
reconstruction by multiplying the gradients with the reconstructor matrix, two DSPs apply the
parameters of the control algorithm to the reconstructed modes, and two DSPs handle the input
of the data from the Lincoln Labs CCD camera and the output to the deformable mirror. The
total computing timeise.g. 0.7 msec if 15 modes are reconstructed from 20 subapertures.

4.2.3 Laser and launching telescope

The heart of the laser system isa3W dye ring laser pumped by a25W Argon ion laser. Both
lasers are purchased from Coherent (Coherent 899 and Coherent INNOVA 200). The decision
for this laser type was made because they are commercial products with all the advantages of
service and warranty. The output power should be sufficient to produce a star with a magnitude
of my & 10 (depending on meteorological conditions).

Pulse lasers with larger output power are also available but there are other problems that
make them less attractive: Due to the high output power in the pulses security is a more diffi-
cult matter. The laser pulses have to be synchronised with the CCD camera. And, saturation
processes in the sodium layer can limit the maximum brightness of the artificial guide star. Al
these difficulties make the dye laser the more sensible choice.

The laser system is placed in the Coudé laboratory of the 3.5-m telescope. The laser beamis
guided backwards through the Coudé optical train to the side of the primary mirror and through



4.2. ALFA, AN ADAPTIVE OPTICS SYSTEM WITH A LASER GUIDE STAR 75

additional optical el ementsinto thefocusof the launching tel escope (see Fig. 4.13). Inthe Coudé
laboratory the required power supply, to provide 50 kW for the pump laser, and the cooling wa-
ter, to dissipate the heat, are available. The cooling facility is more than onekm away from the

telescope avoiding the problems with home made seeing.

| Aircraft Dateclion Camera

’ Laun! Telescope

I i1 J?'-i

MCT & MC2

Coude-Lab
E!’; with Lasar Facility

Figure 4.12: Schematics of the laser path on the 3.5-m telescope. The optical train from the
Coudéfocusto the mirror $4 isthe standard Coudé path. The mirrorsMT1 to MT4 are mounted
additionally to transport thelaser beam into the Cassegrain focus of thelaunching tel escopewith
adiameter of 50cm. Theletter D denotes diagnostic elementsin the optical path to ensure that
the laser beam is held in the focus of the launching telescopes for all telescope positions. — An
aircraft detection system is mounted at the front ring of the tel escope.

Guiding thelaser beam from the Coudé focusto the focus of the launching telescoperequires
aprecise control of al the mirror positions since a small misalignment does not only move the
position of the laser guide star but it also deterioratesthe illumination of the telescope pupil, de-
creasing the laser power that islaunched into the atmosphere. Thus, there are anumber of CCD
cameras and position sensitive detectors (PSD) to monitor the position of the laser beam and a
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number of pilot lasersto control the position of the mirrors. This processis partially automated
in a closed loop procedure. However, one should not underestimate the complexity of the task
to keep the laser beam in afixed position for all telescope angles.

Therefore, it seems very attractiveto replace all the optical elements by asingle optical fiber
where the laser isfed in at the exit of the laser tube, and that is placed in the Cassegrain focus
of the launching telescope to provide a point source. The problem is the extremely high energy
density of about 1.4 x 10'' W/m? at thetip of the fiber. Extreme care hasto be taken to have a
clean surface. First experimentswith an optical fiber at Calar Alto have shown that about 70% of
the light can be coupled into the fiber. The transmissivity of the mirror system isdlightly higher
but thisis depending on the mirror surfaces.

SA0055924

(V=9.5, defocusse Guide star
at 100 km
Rayleigh

scattered beam

Figure4.13: The sodium guide star and the Rayleigh scattered light seen through the TV guider
camera of the 3.5-m telescope at Calar Alto. For comparison, the image of natural star is dis-
played too, defocused as the telescope isfocused at the artificia star at an atitude of 100 km.

The illuminated diameter of the launching telescope is chosen such that it is approximately
3ro. Thenthediameter of theinstantaneous speckleimagein thesodiumlayer isminimised. The
energy density at the telescope exit is below the limits set by laser safety regulations; with less
than 50 W /m? thisis less than a standard He-Ne laser with 0.5 mW output power and a beam
diameter of about 1 mm. The aircraft detection system was installed to avoid any risk of even
dightly blinding pilots.

Thelaser system wasinstalled at the 3.5-m telescopein summer 1996 and in August 1996 the
first laser guide star was created. Fig. 4.13 displays the first result that is compared to anatural
star with magnitude my = 9.5. The defocused image of natural star — that has a ring shape
because of the central obscuration of the telescope — is of comparable brightness to the laser
guide star. The very bright Rayleigh scattered light has the shape of a cone.
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424 Results

ALFA was taken to the telescope in September 1996, and as soon as the weather allowed we
could close the loop on bright natural guide stars. The first result is shown in Fig. 4.1. During
the following observing runs with a total of approximately 40 nights the progress was slower
than anticipated partially due to very bad weather conditions; more than half the nights were
lost, during the other half the seeing was worse than 1.5” with very few exceptions.

It became clear very quickly that the mirror surface had to beflattened with an interferometer
in order to produce a good static image in the infrared camerathat is the precondition for good
image quality, as described above. After the FISBA interferometer was installed and the mirror
flattened to about 100nm rmsflatness, theimage quality in the corrected image improved con-
Siderably. InFig. 4.14, the 0.24” binary ¢ UrsaMajorisisclearly resolved although the star was
observed through athin layer of clouds. The star itself was used as a guide star for the adaptive
optics system in the Shack-Hartmann sensor. 20 Zernike modes were corrected, and the sys-
tem was running at 900 Hz. The improved image quality compared to the very first result (see
Fig. 4.1) shows particularly in the lower halo and in the reduced number of subsidiary peaks.

Figure4.14: A near infrared image of the 0.24” binary ¢ UrsaMajoris (HR 3894, my = 4.6)
observed through clouds in 1.7 seeing on March 1, 1997. The observing wavelength was
2.2 um. 20 Zernike modes were corrected with a frame rate of 900 Hz. Thisis a raw image
without any image processing adding up singleimages to a total exposure time of 50sec. The
two components are clearly resolved.

In Sect. 2.6, the temporal power spectraof the Zernike modeswere discussed. Corrected and
uncorrected power spectrafor the Zernike modes .J = 4 (focus) to J = 9 (trifoil) are displayed
in Fig. 4.15 measured with 300 Hz. The corrected spectra have clearly reduced values at low
frequencies. The transient frequency is around 10 Hz. All uncorrected spectra are dightly de-
creasing in the low frequency region below 10 Hz. Fitting an asymptote to the high frequency
parts of the spectra gives values around —4 for all modes. Thisis dightly lessthan the —17/3
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Figure 4.15: Uncorrected and corrected power spectra of six Zernikemodes (J = 4to09) asa
function of frequency in Hz.
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predicted by the theory. The theory is confirmed, however, in predicting the same power law
for all Zernike modes at high frequencies. The contributions of the single Zernike modes to the
variance of thewave-front were calculated by Noll [62]. He found that the contribution depends
on the radial order of the modes (see Table 2.2). The radia modefor J = 4to6isn = 2 and
for / = 7t09 n = 3. For the low order modes with n = 2 one finds a variance that is about
three timeslarger than for n = 3 confirming Noll’s numbers.

It was also discussed in Sect. 2.6 that — except for the lowest orders (tip and tilt) — the low
frequency asymptote for the power spectra of a given radial order averaged over the azimuthal
ordersisaconstant [11] (see Fig. 2.6). If the average of the three modesof n = 2 (J = 4 to 6)
are supposed to have a constant power in the low frequency region there should be at least one
that isincreasing. This effect could not be measured. The predicted dependence of the transient
frequency on the radial order of the Zernike modes (Eq. 2.48) could not be confirmed either.
More measurements have to be taken before these questions can be answered conclusively.

Transfer Function Spectrum
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Figure4.16: Themeasured and thetheoretical transfer function of theclosed |oop systemfor the
Zernike mode J = 4 (focus). The measured transfer function isthe quotient of the uncorrected
and the corrected spectrum displayed in Fig. 4.15. The theoretical function is calculated using
the parameters of the control loop.

The corrected power spectrainFig. 4.15 areall reduced to about 10~ at low frequencies, and
they approach the uncorrected spectra around the servo bandwidth of about 30 Hz. They show
the same behaviour as the corrected tip-tilt spectra that were discussed in Sect. 3.4.1. Fig. 4.16
shows the measured closed loop transfer function, i.e. the quotient of the corrected and the un-
corrected spectrum, that is compared to the theoretical transfer function which follows from the
control loop parameters. Thelatter has been cal culated by Douglas L ooze fromthe University of
Massachusetts, USA, who designed the control loop algorithm for AOA. The theoretical and the
measured transfer functions agree very well indicating that the control loop isworking properly.
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The limiting magnitude of the current tip-tilt system is my = 13.5. With the new CCD we
expect it to be around my = 16. In the Shack-Hartmann sensor we could close the loop on a
my = 11 magnitude star in 1.5” seeing. The upgrade of the CCD camera should improve this
value by about two magnitudes.

The best result to dateis shown in Fig. 4.17. Theimage of the star 14 Peg isimproved from
2.4% to 20% Strehl ratio in 0.85” seeing. The star itself was used for wave-front sensing. The
Shack-Hartmann sensor was running at 100 Hz correcting 15 modes, and the tip-tilt sensor was
running at 80 Hz. Thus, the system was running under the same conditions as with alaser guide
star without any obvious problems.

A Strehl ratio of 20% corresponds to a phase variance of 1.6 rad®. Correcting 17 modes per-
fectly reduces the wave-front phase varianceto o2, = 0.6 rad® (see Eq.(2.45) with g = 0.53 m,
corresponding to 0.85” seeing). The flatness of the deformable mirror of 100nm is equivalent
to a phase variance of 03,; = 0.1rad” a 2.2 um. The Greenwood frequency at a wind speed
of an estimated 9m /sec is 7 Hz. As the system was running with aloop frequency of 100 Hz
the servo bandwidth is about 10 Hz. With Eq. 3.39 the phase variance due to finite bandwidth

then becomes % = (170%)5/3 = 0.55rad®. The finite servo bandwidth adds approximately

0.5rad?. Theremaining variance of 0.35rad” isdueto all remaining errorsin the optical align-
ment etc.. Estimating the variances due to finite bandwidth and imperfect alignment cannot re-
place the measurement of these quantities but it can give an idea of the source of the residual
phase variance.

Figure 4.17: Uncorrected and corrected images of 14 Peg (my = 5.04) a 2.2 pm taken on
July 21, 1997. Correcting 17 Zernike modes with aloop frequency of 100 Hz the Strehl ratiois
improved from 2.4% to 20% in 0.85"” seeing. Each of the displayed images is the sum of 100
exposures of 0.2 sec. No image processing was applied.
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Conclusions

We have discussed effects of imaging through turbulence and methods to improve the reduced
image quality with adaptive optics. The detailed description of existing adaptive optics systems
has shown that the technical requirements are met by current technology. There are now about
10 telescopes in the world where adaptive optics is used on a more or less regular base. One
can expect that this technology will mature considerably over the next few years, and that the
impact on astronomical research will become significant. In particular the new 10-m classtele-
scopes that will al be equipped with adaptive optics will contribute to the scientific progress
since diffraction limited images from these tel escopes means a factor of 20 to 50 improvement
over seeing limited images.

On a more modest scale, simple tip-tilt systems improve the peak intensity by 70 to 300%
and the FWHM by about 0.2 in the near infrared, increasing the scientific output of atelescope
without any significant disadvantage. Thus, it is very worthwhile to equip infrared telescopes
with tip-tilt systems.

The limit of resolution is an area where large ground based telescopes are superior to ob-
servations from space telescopes since the limit for the size of a monolithic mirror in space is
considerably below 10m. Other advantages of ground based telescopes are cost, lifetime, and
flexibility asimprovements or new instruments can be fitted easily.

If it comesto field of view and sky coverage, so far, the space tel escopes have an advantage
over observations from the ground. We have discussed methods to increase the corrected field
of view of ground based observations by using multi-layer adaptive optics, and to increase the
sky coverage by creating laser guide stars. For multi-layer adaptive optics one has to tackle the
problems of separating the influence of single turbulent layers on the imaging process, and of
applying the correction to the proper layers with multiple deformable mirrors. Laser guide stars
provide a method to determine the aberrations caused by the turbulence with the exception of
the wave-front dope. Although this already increases the sky coverage drastically one has to
be able to deduce the tip-tilt information from the laser guide star in order to achieve 100% sky
coverage. The research has to concentrate on these two areas to make observations from the
ground competetive with space observations.

Since angular resolution is of key importance in most areas of astronomical research the
desire for higher resolution does not stop at 10 m apertures. However, rather than envisioning
larger monolithic telescopes, interferometer arrays are planned and tested, coherently switching
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together the light from single telescopes. Then, the limit of resolution is given by the longest
baseline. The most challenging projects in this area are the interferometric connection of the
two Keck Telescopes, the VLTI connecting eventually the four Very Large Telescopes in Par-
ranal, Chile and the interferometric mode of the LBT. Each of the single 8-10m apertures re-
quires adaptive optics to increase the peak intensity and the accuracy of the measurement. The
coherently combined beams display afringe pattern that moves around randomly depending on
the wave-front slope between the single apertures. This cannot be corrected for by the adaptive
optics systems in each telescope. Similar to the problem of the tip-tilt measurement with a nat-
ural guide star in alaser guide star system one needs a natural guide star to stabilise the fringe
motion.

Here, one faces the same problems as with single telescope adaptive optics. The correction
frequency for fringe tracking is affected by the telescope baseline and by the observing wave-
length. This determines the limiting magnitude. If the scientific object is not bright enough to
serve as a guide star there has to be a star of suitable brightness usually within a few arcsec of
the scientific object. Then, one can use the guide star to stabilise the fringe motion, and one can
integrate on the scientific object. Increasing the angle between the object and the guide star is
most desirable since it improvesthe sky coverage. Thistechnique hasto be mastered in order to
make telescope interferometers useful. The experience with adaptive optics systems is a step-
ping stone to solving these problems.
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